
CHAPTER 5

Longitudinal demographic
data collection
Marlène Gamelon, Josh A. Firth, Mathilde Le Moullec,
William K. Petry, and Roberto Salguero-Gómez

5.1 Introduction: long-term field studies

Demographic data can be collected during a single
visit, or multiple visits, to the population. For instance,
a single visit to the fieldmight be in principle enough to
collect data on tree rings or fish otoliths, which can then
be used to estimate key demographic parameters retro-
spectively (see Chapter 4). Alternatively, longitudinal
studies involve numerous visits to the study popula-
tion with repeated observations/measurements; this
kind of approach typically occurs over multiple weeks,
months, years, or even decades, depending on the gen-
eration time of the study species, research aims, and
available support for the research programme. The
collected longitudinal data are then used to estimate
demographic parameters such as annual population
abundances (see Chapter 7) and/or survival, growth,
and reproductive rates (see Chapter 13).

Many long-term studies are running worldwide.
In Antarctica, South America, and Central America,
the monitoring of avian and mammalian populations
has already reached over 50 years in some areas (see
Taig-Johnston et al. 2017 for a review). In the north-
ern hemisphere, some of the longest studies even reach
70 years (Clutton-Brock and Sheldon 2010). Even if
there has been a strong focus on birds and mam-
mals (Festa-Bianchet 2017; Kappeler et al. 2017 for
some reviews on mammals; Smith et al. 2017; see e.g.
Marshall et al. 2018), long-term studies also exist for
other taxa within the animal kingdom (e.g. corals, see
Connell et al. 1997; amphibians, see Cayuela et al.
2020). Long-term field studies are not restricted to
animals: long-term plant studies span over 20 years
in regions of North America (e.g. Ellis et al. 2012),

Central America (e.g. Condit et al. 2017), and Europe
(e.g. Hutchings 2010). Longitudinal data have been,
and continue to, be collected on many taxa across the
Tree of Life and have provided significant insights in
ecology, evolution, and demography (Clutton-Brock
and Sheldon 2010; Reinke et al. 2019). Importantly,
demographic data can be collected at the population
level (e.g. time series of population counts) or at the
individual level (e.g. monitoring of marked and/or
geo-referenced individuals throughout their life).

From demographic data collected at the population
level (i.e. time series of population counts) and with
appropriate methodological tools to analyse them (see
the next chapters), several questions can be addressed.
For instance, ‘What is the population size trend?’,
‘What is the population spatial distribution?’, ‘What
are the effects of changes in climate on population
size/distribution?’, and ‘What are the effects of human
activities on population size/distribution?’. Finer-scale
demographic data can also be recorded. For instance,
population size time series can be collected with dis-
aggregation into stage, sex, or morph (e.g. counts of
adult females). This information is not recorded at the
individual level, but still, it is more useful than total
population counts. This better resolution can help in
tackling some of the questions outlined below with
individual-level data.

While long-term data collected at the population
level provide significant insights into the popula-
tion’s dynamics, they usually do not allow a full
understanding of the underlying demographic mecha-
nisms causing changes in population distribution and
abundance (Clutton-Brock and Sheldon 2010). Indeed,
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changes in population abundance over time can result
from changes in rates of births (reproduction), deaths
(survival), emigration, and/or immigration. That lack
of mechanistic resolution of population-level data is
precisely themajor limitation of longitudinal studies at
the population rather than individual level.

For instance, climate-induced changes in popula-
tion abundance can result from the sensitivity of a
particular stage class (e.g. a particular age) to climate
conditions that will exhibit lower survival or fecundity.
In the well-studied Soay sheep (Ovis aries) population,
Coulson et al. (2001) showed that juvenile survival was
particularly sensitive to the North Atlantic Oscillation,
a weather phenomenon associated with temperature
and rainfall. Similarly, within conifer forests, recruit-
ment and growth were associated with fire (Tepley
et al. 2017). Interestingly, going beyond population
abundance and exploring the effect of climate and
human activities on all vital rates and at all stages can
also allowone to detect reduced survival and/or fecun-
dity even if population abundance apparently remains
stable. For instance, in an eagle owl (Bubo bubo) popula-
tion, adult survival has dramatically decreased because
of electrocution, despite constant population abun-
dance, the decline in survival being balanced through
massive immigration (Schaub et al. 2010), which could
only be detected because the data were collected at the
individual level.

From demographic data collected at the individual
level, it is possible to accurately identify the proximate
causes of changes in population size/distribution
and the underlying demographic mechanisms. Thus,
questions such as ‘What are the effects of changes in cli-
mate on survival/fecundity/immigration/emigration
rates?’, ‘What are the effects of human activities on
survival/fecundity/immigration/emigrationrates?’,
‘What are the stage classes the most influenced by
changes in climate?’, and ‘Which stage classes are
most influenced by human activities?’ can be tack-
led. Identifying the stages and their vital rates (e.g.
survival, fecundity) the most affected by climate
changes or human activities is crucial in conser-
vation and management to develop appropriate
targeted strategies (see Frederiksen et al. 2014 for a
review).

In that respect, longitudinal studies at the indi-
vidual level are powerful. But as with population-
level studies, they suffer from limitations. Indeed,
implementing individual-based monitoring is gener-
ally costly in terms of money and human resources,
oftentimes requiring expensive materials (e.g. GPS
collars) and experienced fieldworkers during long

periods of time. Moreover, data collected might
be scarce due to low sample sizes and because
researchers are reluctant to individually monitor indi-
viduals in vulnerable populations. In those cases,
it might be advisable to take advantage of both
population-level and individual-level data, through,
for example, an integrated modelling approach (see
Chapter 14).

In this chapter, first we introduce the reader to
procedures that can be implemented in the field to
collect specific demographic data on mobile species
(e.g. birds, mammals), at both the population and
individual levels. Second, we present the procedures
and the type of demographic data that can be col-
lected on sessile species (e.g. corals, plants) at both
levels.

5.2 Collection of longitudinal
demographic data on mobile species

5.2.1 Procedures and type of data collected
at the population level

The problem of imperfect detection while
monitoring populations

Within a mobile species’ range, the population dynam-
ics can be rather complex. A fragmented landscape
means that individuals from the same population can
occupy diverse habitat types in space and time. Deter-
mining population range size or abundance therein
comes with challenges related to two key aspects:
(1) spatial variability within the studied area and (2)
individual detectability (Yoccoz et al. 2001). Important
errors in quantification of population size and emer-
gent dynamics can be made if individuals are missed
when they are present at the site, or misidentified, or
when the same individual is counted multiple times
(Miller et al. 2011). Imperfect detection depends on
species characteristics (e.g. camouflage), spatial and
temporal variation (e.g. migration), and survey char-
acteristics (Cressie et al. 2009; Guillera-Arroita 2017)
(Figure 5.1). Uncertainties in the survey character-
istics depend on the type of monitoring, the study
design, and the analysis (Figure 5.1). If the aim of
the monitoring is to estimate population abundance,
the higher the number of repeated measurements and
sample size, the higher the precision will be. Accu-
rate estimates (i.e. precise and unbiased; Williams et al.
2002), repeated over time, enable the inference of the
drivers of population dynamics, such as climate and
harvest regimes (Thompson et al. 1998; Miller et al.
2011; Guillera-Arroita 2017) (Figure 5.1). Under- or
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Figure 5.1 Hierarchical organisation of imperfect detection in wildlife systems, inspired from Royle and Dorazio (2008), Zuur et al. (2009), Kéry
and Schaub (2012), and Guillera-Arroita (2017). The true abundance is a latent state (S) changing at each time-step, for example year to year
(from year t+1 to t+2), due to changes in vital rates (survival, reproduction, immigration, emigration) affected by ecological processes. At each
time-step, monitoring of vital rates or population abundance results in observations (O), such as the observed abundance (N̂). Each of these
observations is subject to observational processes, which can be decomposed into distinct components. Population survey is one of the
components and consists in applying the required monitoring in the field, using the appropriate study design (at the population or individual level)
and then using appropriate analyses to make inferences (modified from Le Moullec (2019)).

over-estimation of abundances or range sizes can have
important consequences; for instance, they can lead
to ineffective management and incorrect conservation
decisions (Sinclair et al. 2006).

A large diversity of methods for
monitoring populations

Monitoring populations over years to determine range
size and/or abundance has been central in the field
of ecology and wildlife management since the 1930s
(Krebs 1998; Williams et al. 2002; Sutherland et al.
2013), and a large diversity of methods has emerged
since (Seber 1992; Thompson et al. 1998; Sutherland
2006; Morellet et al. 2011; ENETWILD Consortium
et al. 2020). The monitoring method chosen by a man-
ager/scientist, the ‘tools’ (e.g. camera traps, perma-
nent plot) used to increase the overall detectability of

species, as well as the spatial coverage vary according
to the species characteristics, including its rarity and
detectability in the environment (Figure 5.2). There-
after, data can be collected with multiple monitoring
methods and sampling designs (see Figure 5.2): for
instance, camera traps located at random or stratified
designs can be usedwith capture–recapture or distance
sampling. Several of the listed monitoring approach-
es here are also applicable to sessile species (see
section 5.3.1).

Estimating population abundance can be performed
on an absolute or relative scale with direct or indirect
population counts. Absolute abundance methodolo-
gies aim to estimate the true population size, that is, the
state variable, while relative abundancemethodologies
(e.g. capture rate, hunting records, sign detection rate,
activity indices) estimate the population size relative
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to a previous survey (Pollock et al. 2002; Hopkins
and Kennedy 2004; O’Brien 2011; Amos et al. 2014).
Importantly, the latter approach assumes a constant
detection probability and thus requires constant survey
design, personnel training, species behaviour, habitat
use, and range size between survey events. Under such
conditions, the trends in abundance can inform man-
agers’ decisions. However, relative estimates of popu-
lation size cannot be compared across systems (Amos
et al. 2014).

Abundance estimates from direct individual counts
within a population require visual detection of the
organism (i.e. total counts, camera surveys). These
methodologies are often preferred (Morellet et al.
2011) and are adapted for abundant, tame, and easi-
ly detectable species, since they are ‘data hungry’ for
robust modelling and often logistically costly (Yoccoz
et al. 2001; Guillera-Arroita 2017) (Figure 5.2). Conse-
quently, these approaches are often restricted to small-
scale studies (but see Yuan et al. 2017). Monitoring
methods for rare or hard-to-detect species, such as
cryptic, nocturnal, forest, or aquatic species, require
the use of specific tools to increase detections and spa-
tial coverage (e.g. spotlight, thermal imaging, acous-
tic recorders) (Marques et al. 2013). For instance, to
monitor marine species, unmanned underwater vehi-
cles (UUVs) can be coupled with postproduction com-
puting algorithms to obtain the relevant demograph-
ic information (Smale et al. 2012). Notably, the large
diversity of existingmethods tomonitor populations in
terrestrial systems is still valid in marine environments
(see Katsanevakis et al. 2012 for a review). In some cas-
es, indirect population counts based on signs detection
(e.g. fecal pellet counts, track counts, or environmen-
tal DNA) can be better suited to the task (Pollock et al.
2002; Thompson 2004; MacKenzie et al. 2005; Jones
2011).

The methodology chosen to study a population
should preferably be associated with a measure of
detection probability that is inherent to certainmethod-
ologies, such as distance sampling (Buckland et al.
2007a), or capture–mark–recapture (Yoccoz et al. 2001).
Capture–mark–recapture is further developed in the
next section on individual-based methods, yet infer-
ences on population abundance can be drawn from
this methodology too. More generally, information on
organism resightings (marked or unmarked) (Royle
et al. 2013) is often combinedwithmonitoringmethod-
ologies to access information on detection probability,
that is total counts (Le Moullec et al. 2017), and camera
traps (Karanth and Nichols 1998).

Methods for spatially referenced observations

Spatial referencing of individual observations (i.e.
coordinates, spatial unit) within a population enables
researchers to relate the frequency of detections of indi-
viduals to the surrounding conditions, that is spatially
referenced environmental covariates (Aarts et al. 2012;
Guillera-Arroita 2017). Thereafter, within themodelled
spatial distribution of the species, population density
can be predicted in areas or periods of time not sur-
veyed, as long as extrapolations are done within the
range of data monitored (Sillett et al. 2012). Random
sampling of individuals across the study region is fun-
damental to unbiased design-based studies. However,
model-based studies grant access to a large diversity
of study designs and opportunistic count data collec-
tion. Aarts et al. (2012) demonstrated the similarities in
spatial density estimates between count data collected
in discrete space (i.e. number of observations per spa-
tial unit) or in continuous space (e.g. use-availability,
where each individual is treated as one observation)
and presence–absence data (if the spatial unit corre-
sponds to single observations). Hence, data to model
the spatial density can be diverse (Baddeley et al. 2006;
Zuur et al. 2009; Royle et al. 2013; Ramsey et al. 2015;
Williams et al. 2017; Antún et al. 2018; Le Moullec et al.
2019). Spatiotemporal variations in detection probabili-
ty are often accounted for, prior to analysing the spatial
density function (i.e. two-stage approach), but in some
cases the detection and density function are estimated
simultaneously (i.e. one-stage approach) (Royle et al.
2013).

5.2.2 Individual-level long-term field studies:
concepts, methods, and data

Methods that allow individuals within a population
to be uniquely recognised have given rise to a pletho-
ra of long-term studies of wild animal systems that
have been formative in our understanding of their ecol-
ogy, evolution, and conservation biology. The ability
to individually recognise animals has not only provid-
ed mechanistic insights into the drivers of the patterns
often considered by long-term population-level stud-
ies (such as the movements between, and age struc-
tures within, populations, and the causes of changes
in fitness or selection), but also proven foundational
in understanding social structure, individual-level
fitness, and the links between different life history
stages and generations (Clutton-Brock and Sheldon
2010). This section explores current and developing
procedures used to collect data at the individual level
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in these long-term studies, the types of data these
approaches provide, and the new implications that
recent advances are allowing.

Individual-level monitoring using
physical captures

The fundamental premise of long-term individual-
based field studies in animal populations of mobile
species has long been, and continues to be, the
individual-level ‘capture, mark, recapture’ (CMR) pro-
cedure (see Figure 5.1); an individual is ‘captured’
(physically or simply recorded), ‘marked’ in a unique-
ly identifiable way (through active intervention or
through documenting individually recognisable char-
acteristics, such asmarks on the tails ofwhales; Pomilla
et al. 2014), and ‘recaptured’ (or ‘resighted’) at a later
time (i.e. re-recording the unique identity of that indi-
vidual). The particular protocols employed for each
of these stages of the individual-level CMR proce-
dure are specific to the species under consideration
and the practicalities of fieldwork. However, follow-
ing this standard’s underlying logic, these procedures
are constantly refined as new techniques and technolo-
gies become available and applicable to these valuable
long-term study systems.

One of the best examples of the progress of specif-
ic protocols comes from the earliest of the long-term
individual-based field studies: wild birds, particular-
ly tits (great tits, Parus major; and blue tits, Cyanistes
caeruleus), which started as long-term study popula-
tions across Europe in the 1940–1950s (Kluijver 1951;
Lack 1966). These species readily breed in nest boxes
during the spring, so individual CMR protocols can
quickly be developed. They are based on physically
capturing individuals as breeding adults or nestling
chicks, marking them with a unique identifier (a met-
al leg ring with a unique code), and recapturing and
identifying them in following breeding seasons. This
standard procedure was widely and rapidly adopted
across a range of systems (not limited to animals—see
below) and remains a common method across various
long-term population bird studies (Grant 1986; Nisbet
1989; O’Connor 1991; Perrins et al. 1991).

Advancing longitudinal methods: progress
in individual-level monitoring

Although effective, the nest box ringing procedure
meant that these early individual CMR studies within
these systems were limited to monitoring individuals
at specific locations (e.g. nest boxes) and restricted to
particular time-frames (i.e. during breeding). As such,
further techniques were soon developed to expand

beyond these restrictions, either using mist-netting
to capture, mark, or recapture these birds outside of
the breeding period (such as during winter foraging;
Perrins et al. 1991) or using colour bands (display-
ing unique combinations of rings of colours) to allow
non-physical ‘recapture’ via resightings (Ekman 1989).

The aforementioned initial developments allowed
for individual monitoring to be less spatiotemporal-
ly restricted than previous protocols. However, the
advances with the largest potential for these particu-
lar systems (and most of the individual-based long-
term study populations generally) have come from
recent technological developments in automated ani-
mal tracking systems (Bridge et al. 2011; Kays et al.
2015; Jønsson et al. 2016). For instance, various long-
term study populations of tits now tag captured indi-
viduals with passive integrated transponders (or PIT
tags) that are either contained within plastic leg rings
or injected subcutaneously. These PIT tags contain
a microchip with a unique identification code that
can be read, and automatically recorded (i.e. allowing
‘resightings’), by radio-frequency identification (RFID)
stations. The stations can be placed at nest boxes during
the breeding period (Firth and Sheldon 2015; Schlicht
et al. 2015; Firth et al. 2018) or at feeding stations to
allow large-scale resighting during the nonbreeding
season (Firth and Sheldon 2016).

More generally, RFID technology is emerging as
a particularly good example of applying tracking
technologies within long-term individual-based study
populations. This is because RFID is well suited to
these systems due to the size of the tags (often < 1 g),
their relative affordability, and the lifelong readabili-
ty of the microchips which do not require an internal
battery (as they are passive). As such, marking indi-
viduals with unique PIT microchips is now a preva-
lent and staple method of individual CMR systems,
not just for long-term bird studies (Bonter and Bridge
2011) but also across various populations, ranging from
insects to fish to mammals (Gibbons and Andrews
2004; Rehmeier et al. 2006; Silcox et al. 2011). Remark-
ably, these new technologies tend to be less invasive.
While toe clipping for smallmammals has been the rule
for a long time in CMR protocols, these new technolo-
gies (e.g. camera trapping and noninvasive DNA; see
also Chapter 1), now favour noninvasive censusing.

The development of a diverse array of exemplary
methods for individual-based monitoring of animals
comes from long-term studies of mammalian systems
(Clutton-Brock and Sheldon 2010; Hayes and Schradin
2017; Schradin and Hayes 2017). Indeed, some of
the longest and most substantial individual-based
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study populations are mammals, partly due to the
ease of ‘resighting’ these animals, especially for
island populations of large mammals where immigra-
tion/emigration do not exist, and habituation is rapid-
ly achievable due to the lack of predation. For example,
long-term studies such as those on red-deer (Cervus
elaphus), which began in 1971 on the Isle of Rum, Scot-
land (Clutton-Brock et al. 1982), and Soay sheep, which
began in 1985 on St Kilda, Scotland (Clutton-Brock
and Pemberton 2004), have been successful in con-
sistently employing standardised protocols based on
capturing and uniquely marking individuals shortly
after birth, and then resighting these individuals via
regular censuses of the study populations thereafter.
Mammalian systems in less-convenient settings have
benefitted substantially from recent advances in mon-
itoring procedures (Noonan et al. 2015; Hays et al.
2016; Nowacek et al. 2016). For example, bat species
hold many of the same conveniences that long-term
bird systems allow (i.e. occupying researcher-made
boxes, as well as ease of capture in mist nets). As such,
these systemswere also originally based onmonitoring
using individually coded rings but are now converg-
ing on the same technological approaches found to be
useful for monitoring bird systems, for example using
PIT tags and RFID technology (Fleischmann et al. 2013;
Law 2018) that allow automated resightings instead
of relying on physical captures. Similarly, many mam-
mal systems have benefitted from the miniaturisation
of GPS technologies providing high precision and con-
stant monitoring (Tomkiewicz et al. 2010; McMahon
et al. 2017).

Long-term studies based on species that spend
large proportions of their time underground (there-
fore restricting the use of GPS) have had to con-
sider other approaches. For example, the UK Euro-
pean badger Meles meles project, which started over
30 years ago (Macdonald and Newman 2002), was tra-
ditionally restricted to overground monitoring or cap-
ture/resighting procedures. Now, magneto-inductive
tracking techniques are availablewhich allowautomat-
ed, continuous, fine-scale monitoring of individuals
whilst underground (Noonan et al. 2015). These tech-
niques hold much potential for other long-term stud-
ies for other ground-dwelling species (Schradin and
Hayes 2017).

One of the most important potential applications of
technology for longitudinal studies of individual ani-
mals in relatively inconvenient settings may well be
for studies of marine mammals (Hazen et al. 2012;
Mann and Karniski 2017). Here, long-term monitoring
has long been based on identification of individuals

in photos gathered from opportunistic sightings or
transect surveys (Eguchi 2014; Urian et al. 2015),
which makes individual monitoring often very diffi-
cult (Mann and Karniski 2017). Advances in a range
of tracking technologies, from drone surveys to newly
developed animal-borne tags (Hussey et al. 2015; Kays
et al. 2015; Nowacek et al. 2016; Hays et al. 2019), will
provide ripe opportunity to rapidly advance the mon-
itoring of these systems, by allowing individuals to be
monitored over their entire lifetimes.

The new technological monitoring methods also
provide the potential for continuously tracking move-
ments at fine scales (e.g. within resident territorial
species) as well as over larger distances for migratory
species, and even nomadic species moving in irregular
manners (Teitelbaum and Mueller 2019). Further, it is
becoming possible to integrate technology providing
detailed physiological monitoring of individual states,
activity, and metabolism into tracking devices (see
Chapter 2). Such information is particularly valuable
within long-term study systems for which the basic
underlying ecology is already well researched, and
this now provides the potential to allow vast advances
in knowledge surrounding the causes and conse-
quences of individual states (Hayes and Schradin
2017; Schradin and Hayes 2017). Yet, one of the most
important additional advantages of large-scale auto-
mated methods is that these new approaches allow for
simultaneous monitoring of all individuals over large
spatiotemporal scales, thus providing unprecedented
insight into the social structure of natural populations
(Krause et al. 2013; Firth and Sheldon 2016) (see
Chapter 3).

5.3 Collection of longitudinal
demographic data on sessile species
Sessile species are those that lack the ability of
(self-)locomotion. From a life cycle perspective, sessile
species typically correspond to species where estab-
lished life cycle stages are anchored onto a substrate.
Naturally, plants adhere to this definition, though
some remarkable exceptions in the Planta kingdom do
exist, such as the polytomic group of tumbleweeds (e.g.
genus Kali,Amarnathus albus, Salsola spp.) and the Rose
of Jericho (Anastatica hierochuntica). However, sessili-
ty is not unique to plants. Indeed, entire taxonomic
groups of the animal kingdom, such as corals and
sponges, aswell as other species of important economic
value (e.g. barnacles), are sessile. In addition, fungi and
a significant percentage of bacteria (e.g. Geesey et al.
1978) have sessile modes of life.
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The monitoring of sessile species has some advan-
tages over that of mobile species, in that mortality in
sessile species cannot be confounded with the individ-
ual not being at its previous location due to mobility.
As such, the classical equation modelling the changes
in population size (N) over time as a function of the
rates of births, deaths, emigration, and immigration
can be reduced to just two terms, births and deaths,
assuming that dispersal (as well as mobility) does not
occur. However, modelling the demography of sessile
species has its own specific challenges. Indeed, sessile
species, because they are ‘stuck’ in place for most of
their life cycles, have evolved strategies to cope with
the local environmental conditions (Huey et al. 2002;
Svensson and Marshall 2015; Žádníková et al. 2015).
It is precisely the strategies of some of those sessile
species that causes new challenges for the monitoring
of natural populations in sessile species. These strate-
gies include clonality, dispersal, propagule dormancy,
vegetative dormancy, creeping, and mimicry, among
others, and are discussed below.

5.3.1 Procedures and type of data collected
at the population level

Many of the field approaches described above to quan-
tify and estimate the population size, distribution, and
structure of mobile species are also relevant to sessile
species populations (Figure 5.2). However, field tech-
niques to monitor sessile populations tend to capitalise
more on their immobility. Consequently, permanent
plots, quadrats, and transects are the standard meth-
ods used in sessile longitudinal demographic studies.
Nonetheless, technological advances are also reshap-
ing how natural populations of sessile species (e.g.
plants and otherwise) are monitored.

The increase in satellite data resolution now means
that counts of individuals are achievable in ecosys-
tems where density is low, individuals are distributed
at random or quasi-random, and where there is little
three-dimensional layering (Bai et al. 2011). Desert and
Mediterranean ecosystems, for instance, are ideal can-
didate systems where these technologies show more
promise (Peters and Eve 1995). In contrast, monitoring
the population dynamics of sessile species in tropi-
cal and marine ecosystems remains more challenging.
This is because, in these cases, populations of sessile
species tend to have complex elevational structures,
where only adults who have broken through the tight
canopy (or dense marine reef community) are readily
observable with satellites, and thus for which little
information is directly available for other stages.

Novel light detection and ranging (LIDAR) tech-
nologies can complement data acquisition through
their ability to operate in high-density stands (Malhi
et al. 2018). In this regard, the application of the
approaches discussed regarding the detectability of
different life cycle stages in mobile species is just
as equally useful here (Figure 5.1). In addition, the
development of low-elevation aerial technology
holds great promise, though the challenge remains
in how to navigate this technology in landscapes full
of handicaps, such as rocks, wind/water currents,
tree trunks, lianas/algae, and small stems/debris
that may not be adequately identified by navi-
gating devices equipped with smart technology
(but see https://www.ox.ac.uk/research/research-
impact/poetry-motion). Some key applications of
drone (unmanned aerial vehicle, UAV) technologies
have been targeted specifically for agricultural use
(Saha et al. 2018; Jiménez López and Mulero-Pázmány
2019). These approaches, coupled with artificial
intelligence to automatically distinguish and track
individuals (Ampatzidis et al. 2019), represent a
unique opportunity to quantify population number
and even structure in sessile organisms (Figure 5.3).
It is worth mentioning here that the power of these
novel technologies cannot be harnessed efficiently
without taking into account the pertinent advances
in image analysis (e.g. Maillard et al. 2010; Bruijning
et al. 2018). The monitoring of sessile populations
below water is faced with important challenges due
to obvious logistical considerations, such as lack of
oxygen, strong currents, and high viscosity. But novel
developments from physics now also allow for the
treatment of seawater waves as magnifying glasses to
evaluate coral reef properties at high resolution using
UAVs (Chirayath and Earle 2016).

5.3.2 Procedures and type of data collected
at the individual level

While age estimation methods do exist for ses-
sile species (Chapter 4), age estimation in species
such as plants, corals, or sponges in a way that is
not destructive—and thus compatible with long-term
censuses—is challenging. For that reason, among oth-
ers related to convenience (Ebert 1998), the tracking of
individuals in sessile species’ populations, as well as
theirmodelling (e.g. Chapters 9 and 10), tend to include
information on not only survival and reproduction
but also changes in individual size (rather than age)
through time. In fact, size is the most widely used
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predictor of fitness components in the demography of
sessile species (Caswell 2001; Caswell and Salguero-
Gómez 2013).

Size in the field can be measured according to dif-
ferent morphometric variables, including but not lim-
ited to the diameter at breast height (e.g. in trees),
basal diameter (e.g. in shrubs), area (e.g. in corals
and sponges), degree of modularity/architecture, and
number of stems, and so on (Salguero-Gómez et al.
2015). When deciding which morphometric variable to
collect data for, it is key to consider various factors,
such as (1) a priori knowledge on the biology of the
species and its life cycle and (2) the traits that most

inform on the vitality of the individual (e.g. heightmay
be an important trait in light-limiting terrestrial habi-
tats, while area/volume ratio is an important onewhen
considering exposure to the environment). The state
predictor can be based on ontogeny, rather than differ-
ent dimensions of size. Classical categories of ontogeny
have been developed for plants (Gatsuk et al. 1980),
though these ignore non-progressive life cycles. It is
recommended that, if a priori knowledge regarding the
life cycle of the species does not exist, researchers col-
lect multiple axes of information regarding the struc-
ture and ontogeny of the individuals in the first few
field seasons and quickly construct and compare vital

)b()a(

)d( )c(

Figure 5.3 Examples of monitoring methods for the estimation of population abundance, density, structure, and vital rates in sessile organisms.
(a) Permanent plots can be used to quantify and track population dynamics of organisms fixed on a substrate (credit R. Salguero-Gómez).
(b) A pantograph allows for the spatially explicit depiction of population (and community) structures in a compact, reliable, and fast way (credit
P. Adler). (c) Quadrats and transects to track populations/individuals can be used on both terrestrial and aquatic systems (credit M. Beger).
(d) UAVs, coupled with artificial intelligence algorithms, are starting to allow for the accurate, fast, and convenient measurement of population
dynamics of sessile organisms. Photos show the visible range (left) vs. hyperspectral range (right) of a photo containing a parasite (blue square),
a mistletoe (credit R. Salguero-Gómez).
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rate models to evaluate the best predictors. This infor-
mation can then help guide a more efficient, fine-tuned
(and less-laborious) field monitoring protocol.

The kind of data that need to be collected to exam-
ine the population dynamics of sessile species often
requires marking or mapping individuals in a way
that allows researchers to relocate them in the next
site visit. In terrestrial systems, marking/mapping
can be done with sticks, coffee stirrers, pin flags,
nails, or tags attached to each individual. Each mark-
er needs an unequivocally distinct ID—this can be
done through marking each device with pen or by
producing tags that have a unique ID system. Anoth-
er key attribute of these IDs is that they need to
‘survive’ themselves to the next census. Often, and
depending on the climate at the study location and
the kind of material (and presence of herbivores and
people!), tags can go missing, and the researcher must
update missing IDs with new tags based on a ‘best
guess’ system supported by the GPS coordinates of
the surrounding individuals whenever possible. It is
recommended that, when analysing the field data
(e.g. Chapters 9 and 10), the models should be updat-
ed with perfect and retagged individuals to evaluate
potential sensitivities of outputs to field assumptions
on ID assignment. Nonetheless, since markers can go
missing frequently, photography of the study plots for
every census is strongly recommended. This photo-
graphic evidence can become invaluable when trying
to figure out the location of not only individuals but
also entire permanent plots located in dynamic ecosys-
tems, such as dunes and marine environments.

There are pros and cons of using tags of differ-
ent materials: plastic and wooden ones can rapidly
degrade, whereas aluminium tags tend to attract the
attention of herbivores and vandalism. An additional
approach consists of marking the corners of quadrats
with metal bars that can be pounded in the soil/rock
and whose positions can be relocated every visit with
the help of metal detectors. Once the positions of the
quadrat (or transect) have been located, the Cartesian
coordinates of the individuals should allow researchers
to relocate established individuals and identify new
recruits. However, it must be noted that sessile indi-
viduals, contrary to common belief, do move, if only a
little bit. Another important consideration is that met-
al markers can leak materials into the soil and also
affect the temperature of its microclimate (Nassar et al.
2018). Individuals of species’ populations found in
high-density, overlapping statures and/or small sizes
can prove particularly challenging to mark and relo-
cate. In these cases, we suggest marking/mapping the

locations of individuals in a subset of permanent plots
and trying to mark them again a week later using dif-
ferent methods, and then comparing the accuracy and
feasibility of each. Certain GPS systems that offer reso-
lution within centimetres are of particular interest here
too (Lee and Ge 2006).

Certain sessile organisms with cryptic life stages can
pose interesting challenges to monitor the dynamics of
their populations. A feasible approach here involves
the careful exploration of such stages on the perma-
nent plot in a nondestructive way. For instance, some
species undergo dormancy: the aboveground biomass
is completely lacking, but organisms are alive below-
ground. Dormancy comes in the shape of propagule
(e.g. seed) dormancy, vegetative (e.g. established indi-
vidual) dormancy, and roots. In this realm, nondestruc-
tive approaches involve carefully excavating roots or
bulbs to determine if the individual is alive (Bierzy-
chudek 1982). An alternative approach here is to make
the assumption that if a number of years have elapsed
since the last time that the individual was observed
aboveground, this individual is declared dead. In this
context, prior knowledge about age-based and envi-
ronmentally driven mortality schedules can be cru-
cial. However, recent Bayesian statistical frameworks
inspired in capture–recapture methods can be applied
to cope with this uncertainty (Colchero et al. 2012;
Paniw et al. 2017).

Clonality is an important challenge in demograph-
ic studies. Indeed, the incorporation (or not) of explicit
clonal architecture in demographic studies has been a
point of contention since the very inception of mod-
ern plant population ecology (Harper 1981). The con-
siderations here are important because, although dif-
ferent segments (i.e. ramets) of a clonal individual
(i.e. genet) can have a great deal of independence
(Hutchings and Price 1993; Vuorisalo and Hutchings
1996), and can even compete against each other (Price
et al. 1996), considering them all as separate indi-
viduals or parts of the same one will affect how the
individual is tagged, how the models are defined and
constructed, and ultimately the outputs from such
demographic analyses (Janovský et al. 2017; Salguero-
Gómez 2018). For instance, data from the same perma-
nent plots where the functional unit individual has been
established ignoring clonal links (i.e. the researcher
tags seemingly independent units that are in fact
part of the same genet as separate individuals) will
inevitably result in the estimation of higher genera-
tion times and more variable population growth rates
than if done on the basis of genetics (Janovský et al.
2017).
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5.4 The future of long-term studies:
new aspects, current biases, and
arising challenges
Long-term studies clearly hold a large range of ben-
efits compared to a single visit to the field or com-
pared to short-term field studies. They play a crucial
role in our understanding of the drivers of population
dynamics and in the assessment of their demograph-
ic status (e.g. decline, remain stable, increase in size
over time). As such, they are important to inform pol-
icy (see Chapter 19) and to answer societally relevant
questions (Hughes et al. 2017). It is also needed to con-
sider the potential biases, the aspects still requiring
advances, and the potential arising challenges of these
systems. For instance, in regard to biases in the systems
currently under long-term individual-based monitor-
ing, it is notable that species that are relatively easy to
study using traditional CMR techniques are still heav-
ily favoured over ones that it may be difficult to apply
these techniques to. Nevertheless, in the dawn of new
technologies providing novel avenues ofmonitoring, it
could now well be the case that other species are par-
ticularly well suited to new methods despite been pre-
viously difficult to monitor with standard approaches.
As such, diversifying long-term individual-based stud-
ies across the Tree of Life may shed new light on
ecology from the viewpoint of currently understudied
species and allow previously unrealised potential to be
recognised.

One of the most lasting and widely acknowledged
challenges of long-term study systems is their ‘mis-
match’ with the modern scientific funding structures
that often work in short-term research grants desig-
nated to proposals aimed at pursuing set hypotheses
over relatively short periods of time (often 2–5 years)
(Clutton-Brock and Sheldon 2010). This fact, combined
with the growing ‘publish-or-perish’ climate across
biology and most other scientific disciplines, means
that short-term output is often largely favoured over
longer-term goals—which can, nonetheless, be better
representative of the ecology and evolution of the stud-
ied population. As such, the success of individual-
based long-term study systems often relies on the
continuation of short-term studies taking place with-
in their larger framework (Schradin and Hayes 2017).
Thus, it is now important that technological advances
be employed to address this challenge, rather than
magnify it.

Continuously applying new methods to long-term
study systemsmay allow for their value to be constant-
ly recognised. There are already numerous examples

of successfully applying new monitoring technologies
for short substudies within long-term systems (rather
than integratingwithin thewhole standard protocol) to
address specific hypotheses in new ways, for example
using GPS to examine foraging in the long-term
Kalahari meerkat (Suricata suricatta) project (Gall and
Manser 2018). Further, the development of technolo-
gies that allow automated manipulation (rather than
just monitoring) can provide a platform to carry out
individual-level experiments within long-term study
systems, for instance applying automated experimen-
tal treatments to individuals based on their unique
RFID codes in the Wytham tit project (Firth and Shel-
don 2015). Clearly, updating long-running systems
with the ever-developing new approaches provides
many possibilities to acquire continued research fund-
ing for these crucially important study systems.

Finally, a more contemporary challenge arising in
the new age of monitoring long-term studies is how
to most efficiently deal with the vast amounts of data
arising from these systems. Automatically record-
ing information for many individuals within these
populations over large periods of time at fine-scale
resolutions is the dream of any population ecologist,
resulting in the production of millions (Firth and Shel-
don 2016) or even billions (Noonan et al. 2015) of data
points. The analytical techniques developed to handle
this scale of data, ranging from simply dealing with
the raw records (e.g. using artificial intelligence and
machine-learning algorithms) to drawing biologically
relevant conclusions from the patterns within them
(e.g. through comparisons to simulated null models),
are arguably just as important advances as those in
the monitoring technologies themselves (Krause et al.
2013; Kays et al. 2015).

Vast amounts of data are also produced by citizen
science. Thanks to the development of the Internet,
computational techniques and statistical tools, com-
puters, and accessible interfaces now allow people
passionate about wildlife to contribute to long-term
field studies. Thus, beyond biologists, research projects
are engaging millions of individuals worldwide in
collecting data (see e.g. https://www.ukbms.org for
the UK Butterfly Monitoring Scheme). The number of
citizen science projects has exploded since 2000, and
volunteers gathering data have already contributed to
deliver significant insights into the ecological effects
of climate change (e.g. Bonney et al. 2014; Isaac et al.
2014). Even more recent, modern computational
science techniques are opening up the opportunity
for ‘iEcology’ which aims to monitor populations
through passively generated internet data, such as
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using millions of Google search users’ activity to
infer bird species’ occurrences or analysing Wikipedia
users’ locations to assess fish migration patterns (Jaric
et al. 2020).

Thus, it is essential that biologists/ecologists contin-
ue to ‘keep pace’ with these data analytical techniques
at the same rate that they adopt new data collec-
tion methods and new approaches to provide usable
data storage on large scales, which have been devel-
oped for various long-term studies (Marshall et al.
2018). There is important incentive for ecologists to
workmore closely with engineers, computer scientists,
and data scientists. Cross- and interdisciplinary work
offers promising avenues for future developments in
algorithms to process big data. Once the data have
been gathered, processed, and stored, the question of
access to these data is a final and important challenge
to consider (Mills et al. 2015; Whitlock et al. 2016).
Whether such databases should be open-access and
available for usage by all orwhether certain restrictions
should be applied in an attempt to favour the continu-
ation of these systems is currently under much debate.
Although such consideration is obviously very useful,
the rapidly growing trend towards unrestricted and
immediate access to data across biology (Farnham et al.
2017; Culina et al. 2018; Sarabipour et al. 2019) sug-
gests that open access to such data is not only valuable
but inevitable, and emphasis should now be placed on
establishing approaches to recognise andmaximise the
benefits of this for individual-based long-term studies.
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