
770  |   wileyonlinelibrary.com/journal/mee3 Methods Ecol Evol. 2022;13:770–781.© 2021 British Ecological Society

Received: 14 October 2021  | Accepted: 30 November 2021

DOI: 10.1111/2041-210X.13792  

A P P L I C A T I O N

Rcompadre and Rage— Two R packages to facilitate the use of 
the COMPADRE and COMADRE databases and calculation of 
life- history traits from matrix population models

Owen R. Jones1  |   Patrick Barks1  |   Iain Stott1,2  |   Tamora D. James3  |   
Sam Levin4  |   William K. Petry5 |   Pol Capdevila6 |   Judy Che- Castaldo7 |   
John Jackson1  |   Gesa Römer1 |   Caroline Schuette7 |   Chelsea C. Thomas7 |   
Roberto Salguero- Gómez8,9

1University of Southern Denmark, Odense C, Denmark; 2School of Life Sciences, University of Lincoln, Lincoln, UK; 3Department of Animal and Plant Sciences, 
University of Sheffield, Western Bank, Sheffield, UK; 4Helmholtz- Centre for Environmental Research— UFZ, Martin Luther University Halle- Wittenberg, 
Leipzig, Germany; 5Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA; 6School of Biological Sciences, 
University of Bristol, Bristol, UK; 7Alexander Center for Applied Population Biology, Conservation & Science Department, Lincoln Park Zoo, Chicago, Illinois, 
USA; 8Department of Zoology, University of Oxford, Oxford, UK and 9Max Planck Institute for Demographic Research, Rostock, Germany

Correspondence
Owen R. Jones
Email: jones@biology.sdu.dk

Funding information
Natural Environment Research Council, 
Grant/Award Number: NE/M018458/1; 
Division of Biological Infrastructure, 
Grant/Award Number: DBI- 1661342; Det 
Frie Forskningsråd, Grant/Award Number: 
DFF- 6108- 00467; Max Planck Institute 
for Demographic Research

Handling Editor: Timothée Poisot 

Abstract

1. Matrix population models (MPMs) are an important tool for biologists seeking to 
understand the causes and consequences of variation in vital rates (e.g. survival, 
reproduction) across life cycles. Empirical MPMs describe the age-  or stage- 
structured demography of organisms and usually represent the life history of a 
population during a particular time frame at a specific geographical location.

2. The COMPADRE Plant Matrix Database and COMADRE Animal Matrix Database 
are the most extensive resources for MPM data, collectively containing >12,000 
individual projection matrices for >1,100 species globally. Although these data-
bases represent an unparalleled resource for researchers, land managers and 
educators, the current computational tools available to answer questions with 
MPMs impose significant barriers to potential COM(P)ADRE database users by 
requiring advanced knowledge to handle diverse data structures and program 
custom analysis functions.

3. To close this knowledge gap, we present two interrelated R packages designed 
to (a) facilitate the use of these databases by providing functions to acquire, 
quality control and manage both the MPM data contained in COMPADRE and 
COMADRE, and a user's own MPM data (Rcompadre) and (b) present a range of 
functions to calculate life- history traits from MPMs in support of ecological and 
evolutionary analyses (Rage). We provide examples to illustrate the use of both.

4. Rcompadre and Rage will facilitate demographic analyses using MPM data and 
contribute to the improved replicability of studies using these data. We hope 
that this new functionality will allow researchers, land managers and educators 
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1  |  INTRODUC TION

Matrix population models (MPMs, hereafter) have become a com-
monplace tool for ecologists, evolutionary biologists and conser-
vation biologists seeking to understand how variation in vital rates 
(e.g. survival, development, reproduction, recruitment, etc.) in the 
life cycle varies geographically and across species. MPMs describe 
population dynamics based on stage-  or age- specific vital rates 
in the population of interest over their life cycle (Caswell, 2001). 
Outputs derived from MPMs include population growth rates 
(Caswell, 2001), key life- history traits (Caswell, 2001) and vital rate 
sensitivities (de Kroon et al., 1986, 2000). These outputs each have 
a well- understood biological interpretation, which allows compar-
ison of MPM- derived population and life- history metrics, and thus 
demography across the diversity of life on Earth, from moss (e.g. 
Okland, 1995) to monkeys (e.g. Morris et al., 2011) to microbes (e.g. 
Jouvet et al., 2018), and in myriad ecoregions.

Since the introduction of MPMs in the 1940s (Leslie, 1945, 1948), 
researchers have published thousands of MPMs for thousands of 
species. Our team has been digitising these MPMs into centralised 
databases for plants (the COMPADRE Plant Matrix Database: 
Salguero- Gómez et al., 2015) and animals (the COMADRE Animal 
Matrix Database: Salguero- Gómez et al., 2016). These twin data-
bases now contain more than 12,000 MPMs for more than 1,100 
species (COMPADRE: 8,708 matrices for 757 species; COMADRE: 
3,317 matrices for 415 species, as of September 2021) and are reg-
ularly augmented with newly published and newly digitised records. 
The databases, their history and the rationale behind the data organ-
isation are described in Salguero- Gómez et al. (2015) and Salguero- 
Gómez et al. (2016), respectively.

COMPADRE and COMADRE store and provide MPMs and their 
associated metadata in a hierarchical structure that, while efficient 
for distribution, can be both a barrier to use and an entry point for user 
errors. The primary component of MPMs are the two- dimensional, 
square projection matrices, and the size of these matrices can vary 
widely across species and studies. Moreover, most projection ma-
trices (A) in the databases are partitioned into their three constit-
uent process- based submatrices such that A = U + F + C. Here, 
submatrix U describes transitions related to survival and growth/
development, submatrix F describes sexual reproduction and sub-
matrix C describes clonal reproduction. Thus, in most cases, each 
MPM is represented by these four matrices (A, the main projection 

matrix and the submatrices U, F and C) alongside information about 
the life cycle stages used in the MPM. In the majority of cases, the 
projection interval (time step) for the MPM is 1 year, but this can 
vary considerably depending on the life history of the organism con-
cerned (e.g. 5- year intervals are common in tree MPMs). Each MPM 
in the databases is also associated with over 40 metadata variables 
extracted from its parent original work(s) (e.g. stage definitions, pro-
jection time steps, citation, taxonomy, geography, etc., detailed in 
Salguero- Gómez et al., 2016, 2015). This nested structure allows for 
higher digitisation fidelity and distribution efficiency, but also means 
that the dataset cannot be imported by ordinary spreadsheet soft-
ware, such as Excel, which accommodate only rectangular (or ‘flat’) 
data structures. Both of the most common tools for working with 
MPMs, the R statistical programming language (R Core Team, 2021) 
and Matlab (Matlab, 2010), readily accept hierarchical data struc-
tures. However, users must have a familiarity with handling a range 
of nested object classes to organise the databases to suit their needs 
(e.g. ‘subset to only primates’ or ‘subset to only species from tropical 
ecoregions’). The higher dimensionality can increase the risk of er-
rors, such as using the wrong data dimension, even for experienced 
users.

The R package ecosystem provides a wide range of tools for 
analysing population dynamics from MPMs within individual pop-
ulations. For example, popdemo (Stott et al., 2012) focuses on 
the calculation of metrics related to transient population dynam-
ics and transfer function analyses; popbio (Stubben & Milligan, 
2007) provides functions to accomplish many (but not all) of the 
analyses found in the textbooks of Caswell (2001) and Morris and 
Doak (2002), such as the calculation of eigen properties (i.e. the 
asymptotic population growth rate, stable stage structure and 
reproductive values) or sensitivities and elasticities; Rramas (de 
la Cruz Rot, 2019) provides tools for making population projec-
tions and conducting population viability analyses from MPM 
data; and lefko3 (Shefferson et al., 2021) provides tools that allow 
the inclusion of information on individual histories, which could 
influence population dynamics, into MPM analyses (see Ehrlén, 
2000). However, the tools for life- history analysis provided by 
these existing packages are more limited, with among the most 
notable absence being important life- history metrics based on 
age- from- stage calculations. Researchers that wanted to make 
such calculations (e.g. measures of senescence, longevity or age at 
maturity) have needed to write their own code based on published 

to unlock the potential behind the thousands of MPMs and ancillary metadata 
stored in the COMPADRE and COMADRE matrix databases, and in their own 
MPM data.
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population dynamics, population projection model, stage- structured population model
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equations in mathematics heavy work, which has been a barrier 
to the broader adoption of these methods. Moreover, these life- 
history metrics are often most meaningful in analyses across many 
populations or species. The existing packages provide little sup-
port for the large hierarchical data structures needed to apply 
analyses to hundreds or thousands of MPMs that may underlie a 
single comparative or macroecological analysis.

Here, we introduce two R packages that enable users to con-
struct robust MPM analysis workflows to answer questions from 
single populations to across the tree of life. The first package, 
Rcompadre, is designed to facilitate acquisition, quality control and 
management of the rich, hierarchical MPM data in COMPADRE and 
COMADRE. For example, this package includes tools to filter (sub-
set) the databases based on metadata archived in these resources 
(e.g. by ecoregion, by taxonomic group). In addition to ‘base’ style R 
syntax for these tasks, Rcompadre integrates tidyverse (Wickham 
et al., 2019) functionality to improve usability. The second pack-
age, Rage, builds on the enhanced data accessibility provided by 
Rcompadre by providing analysis pipeline support for arbitrarily 

large numbers of MPMs and the calculation of life- history traits 
needed to support comparative analyses on this scale. These life- 
history traits include life tables, mean life expectancy, generation 
time, among several others.

We showcase downloading, subsetting and preparing MPM data 
for a broad comparative analysis using publicly accessible data re-
trieved with Rcompadre (Box 1). We then illustrate an application 
of Rage to calculate ecologically and evolutionarily relevant metrics 
to test hypotheses related to life- history theory at broad taxonomic 
scale. In doing so, we demonstrate the functional integration of 
Rcompadre and Rage and how investigators can use them in tan-
dem to design workflows (Figure 1) to answer their own questions in 
ecology, evolution and conservation biology.

2  |  Rcompadre

Rcompadre contains functions to facilitate downloading and using 
MPMs alongside their metadata from the COMPADRE and 

F I G U R E  1  Workflow of using Rcompadre and Rage for ecological and evolutionary analyses of matrix population model data. (a) Once 
the author(s) have identified the research question, demographic data in the format of MPMs can be accessed from the COMPADRE and/
or COMADRE databases via the Rcompadre R package. This package allows for the online acquisition, checking (according to data needs) 
and management of the CompadreDB data object (e.g. using cdb _ fetch to download the data and cdb _ flag and filter/subset to 
produce a dataset for analysis). (b) The filtered data (or other user- provided MPM data) can be then migrated for calculations of life- history 
traits with Rage (alternatively, these can be done directly on MPMs provided by the author). The families of functions archived in Rage 
include transformation (e.g. mpm _ collapse), creation of life tables (e.g. mpm _ to _ lx), derivation of life- history traits (e.g. longevity), 
calculation of vital rates (e.g. using vital _ rates to calculate average survival, reproduction, development, etc.), visualisation of life cycles 
(e.g. plot _ life _ cycle) and perturbation analyses (e.g. perturb _ stochastic)
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COMADRE databases (Figure 1a). A central feature of this package is 
the definition of a new object class, CompadreDB, which allows R 
functions that are already familiar to users (e.g. head or tidyverse 
verbs) to be augmented with ‘methods’ that ensure that they appro-
priately handle the structure of MPM data from the COM(P)ADRE 
databases. In addition to improving user- friendliness, the class defi-
nition provides a pathway for extending the compatibility of COM(P)
ADRE data to other existing or future R functions. Briefly, the struc-
ture of CompadreDB objects uses the S4 systems1 with two slots: (a) 
the data slot, which contains a tibble- style data frame (Wickham 
& Grolemund, 2016) with a list column of MPMs and vector columns 

of metadata and (b) the version slot which contains database ver-
sion information for reproducibility, including the version number, 
date created and a link to the database user agreement. In addition, 
we have created the CompadreMat class, which formally defines 
how MPMs are represented in a CompadreDB object. Here too, the 
use of an explicit class definition has allowed us to define how the 
data contained in the object will respond to familiar R functions. For 
example, users can access and replace columns of data using the 
standard x$name and x$name <-  value methods, respectively. In 
addition, we provide the functionality to access the matrix data di-
rectly, for example, using the functions matA or matU to access all A 
matrices or U submatrices in the database as a list. This functionality 
is particularly convenient if the user wishes to apply functions to a 
large set of MPMs, as one would do in comparative and macroeco-
logical analyses (e.g. see recent studies by Coutts et al. (2016), 
Capdevila et al. (2020), Takada and Kawai (2020), James et al. (2020), 

 1R includes significant support for object- oriented programming, and the S4 system is 
one of R's systems for defining object classes. It is a stricter, less flexible system than R's 
base system (S3) but has the advantage of enhancing consistency in how objects are 
defined and handled, and in the ease with which data can be accessed from nested 
objects. The details are far beyond the scope of this article, but see Wickham (2019) for 
fuller coverage.

BOX 1 Using Rcompadre to download and prepare MPM data for analysis

In the following example, we illustrate the use of Rcompadre to carry out typical data download and preparation tasks for an 
analysis relevant to comparative population dynamics research. Specifically, we aim towards an analysis of mammalian life span and 
its relationship with generation time (continued in Box 2).

After loading the required packages, we download the COMADRE data and conduct some basic checks of the matrices. We then 
filter the dataset to include only mammals, to include no missing values in the U matrix, and to ensure that the U and F matrices are not 
filled entirely with zero values, nor that columns of the U matrix sum to 0. We further filter the data to ensure that the projection inter-
val is 1 year. Finally, we can plot the geographical distribution of these data using tools from the ggplot2 and maps packages (Figure 2).

 # Load packages   

library(Rcompadre)   

library(tidyverse)   

 # Fetch data, and conduct basic checks   

comadre <-  cdb _ fetch("comadre", flag = TRUE)   

 # Filter for mammals, split matrices, NA/0 values in U and F matrices and a   

 # projection interval of 1   

mammals <-  comadre %>%   
 filter(Class == "Mammalia") %>%   
 filter(MatrixSplit == "Divided") %>%   
 filter(   

 check _ NA _ U == FALSE, check _ zero _ U == FALSE,   
 check _ zero _ F == FALSE, check _ zero _ U _ colsum == FALSE   
 ) %>%   
 filter(ProjectionInterval == 1)   
 # Plot geographic distribution   

ggplot(mammals, aes(x = Lon, y = Lat)) +   
 borders(database = "world", fill = "grey80", col = NA) +   
 geom _ point(alpha = 0.4, color = "#E69F00") +   
 scale _ x _ continuous(breaks = seq(- 180, 180, 90), expand = c(0, 0)) +   
 scale _ y _ continuous(expand = c(0, 0)) +  
 labs(x = "Longitude", y = "Latitude") +  
 theme _ minimal()
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Jones et al. (2020) and Healy et al. (2019)). In addition to ‘base’ R 
functions, many data analysis workflows make use of functions in 
the tidyverse family of packages (Wickham et al., 2019). Our pack-
age includes ‘tidy’ methods for CompadreDB objects, allowing users 
to filter, arrange, mutate, select, summarise, rename and 
join COM(P)ADRE data to answer their study questions efficiently 
and at scale. The provision of these tidyverse methods also means 
that Rcompadre benefits from the piping (e.g. %>%) functionality of 
magrittr and more recently in base R (|>, in v.4.1.0 and later). 
Examples of how this functionality can streamline the human read-
ability of workflows can be found in the vignettes at the package 
development pages.

In addition to a wide range of method- based support of existing 
R functions, Rcompadre provides functions for additional workflow 
tasks that follow the naming pattern of cdb _ (pronounced ‘compa-
dre database’) followed by a meaningful verb. For example, cdb _

fetch retrieves COM(P)ADRE data of the current or any previous 
database version from the web as a CompadreDB object, and cdb _

compare reports the differences between any pair of CompadreDB 
objects. Table 1 summarises the most important Rcompadre func-
tions, and full documentation of all functions is provided in the pack-
age manual.

2.1  |  Data management and checking

The COM(P)ADRE databases include metadata associated with 
each MPM including taxonomic information, geolocation and de-
tails of the source publication (see the User Guide at www.compa 
dre- db.org or Salguero- Gómez et al., 2016, 2015 for full metadata 
documentation). When working with these data via Rcompadre, 
we can see the richness of the metadata with R's names func-
tion and users can use any of these metadata columns to filter 
the database prior to analysis. The projection matrices themselves 
are contained in a list column called mat, where each element in-
cludes a list of the four matrices: A and the submatrices U, F and 

C (see above). The list also provides information on matrix stage 
definitions. All other columns of the COMADRE database object 
are ordinary vectors.

Not all COM(P)ADRE data will meet the inclusion criteria for a 
particular analysis. Rcompadre includes several general functions 
for checking the data that use the quality control flags generated 
when MPMs are digitised and checked before addition to the da-
tabases. These data checks are accessed through Rcompadre using 
the cdb _ flag function. This function, which can be implemented 
as a stand- alone function or during data retrieval by cdb _ fetch, 
adds logical metadata columns to the provided CompadreDB object 
which can be used for data filtering (see ?cdb _ flag for details 
of the available data property checks). For example, a minority of 
studies published only the main projection matrix, A, thereby pre-
venting its decomposition into the U, F and C submatrices which 
may preclude certain demographic analyses. Matrices may also have 
missing (NA) values where a transition was not estimated. Other 
potential pitfalls flagged by this function include matrices that are 
singular (non- invertible), non- ergodic (where initial stage structure 
can influence asymptotic population growth rate), reducible (where 
the associated life cycle graph does not contain all necessary transi-
tion rates to enable pathways from all stages to all other stages) or 
non- primitive (Caswell, 2001; Stott et al., 2010). Depending on the 
desired downstream analyses, researchers may need to filter the 
database based on one or more of these flag columns.

The quality checks performed by cdb _ flag cannot antici-
pate all potential inclusion criteria, and we strongly encourage in-
vestigators to perform additional checks that may be necessary to 
determine the suitability of a MPM record for their analysis. The 
existing metadata columns associated with each MPM contain a 
wealth of useful information to this end. For example, the interpre-
tation of many metrics derived from MPMs depends on the projec-
tion interval (ProjectionInterval). We advise users to filter 
on this column to a common projection interval prior to analysis or 
to correct analysis outputs to the same temporal units. An analy-
sis may also require delineating MPM records that use post-  versus 

F I G U R E  2  The spatial extent of data 
in the subset of mammal data used in our 
example analysis. Note that 186 of the 
matrices for mammals in our set (~27%) 
lack associated spatial information

http://www.compadre-db.org
http://www.compadre-db.org
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pre- reproductive census models. Although both databases have 
a metadata field that reports this information (CensusType), it is 
often not reported in original publications and thus COM(P)ADRE 
includes records with incomplete metadata. Users may therefore 
need to carefully consider the source publication (e.g. retrieved 
using the DOI _ ISBN and AdditionalSource column metadata) 
or contact the original authors to determine suitability.

Finally, Rcompadre includes a function, cdb _ build _ cdb, 
which allows users to access the full functionality of Rcompadre 
for their own data by constructing valid CompadreDB objects from 

user- supplied lists of matrices, (optional) stage information and an 
accompanying data frame of metadata. Furthermore, we provide a 
way for users to augment COM(P)ADRE with a CompadreDB ob-
ject containing their own data using the function cdb _ rbind. 
This nimble data extensibility ensures the continued utility of 
Rcompadre's suite of workflow tools without dependency on exter-
nally maintained data.

In Box 1, we illustrate the use of Rcompadre to download, check 
and filter the COMADRE database (animal MPMs) in preparation 
for a later analysis of mammal life span using Rage. Vignettes at 

TA B L E  1  The functions in Rcompadre are grouped into four categories: Data acquisition, Data checking, Data management and Accessor 
functions. We outline the most important functions here, with a brief description. Users should consult the package documentation for a full 
description of named functions (e.g. ?cdb _ fetch) and to see a full list of functions

Category Function Description

Data acquisition cdb _ fetch() Downloads the current version of the COMPADRE or COMADRE 
databases, or loads a local database file

cdb _ metadata() Extracts a tibble with only metadata from a CompadreDB 
object

Data checking cdb _ collapse() Collapses a CompadreDB object by averaging projection matrices 
over levels of one or more grouping variables

cdb _ compare() Compares two versions or subsets of CompadreDB objects

cdb _ flag() Flags potential problems with projection matrices within a 
CompadreDB object, such as missing values, singular U 
submatrices, non- ergodicity, non- irreducibility, primitivity, etc. 
(see Iain Stott et al., 2012)

cdb _ check _ species() Checks for specific species in a CompadreDB object

Data management as _ cdb() Generates an S4 CompadreDB object from S3 formatted data

cdb _ flatten() Converts a CompadreDB object into a flat data frame with 
projection matrices and vectors stored in string representation

cdb _ unflatten() Converts a flattened data frame back into a CompadreDB object

cdb _ id() Creates a vector of integer identifiers corresponding to unique 
combinations of a given set of columns

cdb _ id _ stages() Creates a vector of integer identifiers corresponding to unique 
combinations of a species and matrix stage class definitions

cdb _ id _ studies() Creates a vector of integer identifiers corresponding to unique 
combinations of publication metadata

cdb _ mean _ matF() Calculates a population- specific mean fecundity submatrix (F) for 
each set of projection matrices in a CompadreDB object

cdb _ rbind() Merges two CompadreDB objects using a row- bind of the data 
slots

cdb _ unnest() Unnests a CompadreDB object by spreading the nested 
components of CompadreMat into separate columns

mat _ mean(), mpm _ mean() Calculates an element- wise mean over a list of projection matrices 
or CompadreMat objects

mat _ to _ string(), vec _ to _ string(), 
string _ to _ mat(), string _ to _ vec()

Converts vectors or square numeric matrices to and from string 
representation

mpm _ has _ prop(), mpm _ has _ active(), 
mpm _ has _ dorm()

Extracts stage- class information (e.g. propagule, dormant and 
active stages) from a CompadreMat or CompadreDB object

mpm _ first _ active() Extracts the integer index of the first active (i.e. non- dormant, 
non- seedbank) stage class in a CompadreMat or CompadreDB 
object

Accessor functions matA(), matU(), matF(), matC() Extracts full projection matrix (A), or the survival (U), sexual 
reproduction (F) or clonal reproduction (C) submatrices from a 
CompadreMat or CompadreDB object
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TA B L E  2  The functions in Rage are grouped into six categories: Life- history traits, Life tables, Vital rates, Perturbation analyses, MPM 
transformation and Visualisation. We outline the most important functions here with a brief description. Users should consult the package 
documentation for a full description of named functions (e.g. ?life _ expect _ mean) and to see a complete list of functions

Category Function Description

Life history traits life _ expect _ mean(), life _ expect _ var() Applies Markov chain approaches to obtain the mean and/or 
variance of life expectancy from a matrix population model

longevity() Calculates the age at which survivorship falls below some 
critical proportion from a matrix population model (see SI in 
Jones et al., 2014)

net _ repro _ rate() Calculates net reproductive value (R0) from a matrix population 
model

gen _ time() Calculates generation time from a matrix population model
mature _ age(), mature _ distrib(), 

mature _ prob()
Calculates the mean age at first reproduction, the stage 

distribution of individuals achieving reproductive maturity 
and the probability of achieving reproductive maturity using 
Markov chain approaches

entropy _ d() Calculates Demetrius' entropy (Demetrius, 1978) from vectors 
of age- specific survivorship (lx) and fecundity (mx)

entropy _ k() Calculates Keyfitz's entropy (Keyfitz & Caswell, 2005) from a 
vector of age- specific survivorship (lx)

shape _ rep() Calculates a ‘shape’ value for distribution of reproduction over 
age (Baudisch & Stott, 2019)

shape _ surv() Calculates a ‘shape’ value for survival lifespan inequality 
(Baudisch, 2011)

Life tables mpm _ to _ table() Generates a life table from a matrix population model using 
age- from- stage decomposition methods (Caswell, 2001; 
Cochran & Ellner, 1992)

mpm _ to _ hx(), mpm _ to _ lx(), mpm _ to _ mx(), 
mpm _ to _ px()

Calculates mortality hazard (hx), age- specific survivorship (lx), 
reproduction (mx), and survival probability (px) from a matrix 
population model using age- from- stage decomposition 
methods

lx _ to _ px(), lx _ to _ hx(), px _ to _ lx(), px _
to _ hx(), hx _ to _ lx(), hx _ to _ px()

Converts between vectors of age- specific survivorship (lx), 
survival probability (px), and mortality hazard (hx)

qsd _ converge() Calculates the time for a cohort projected with a matrix 
population model to reach a defined quasi- stationary stage 
distribution (see SI in Jones et al., 2014)

Vital rates vitalRates() Derives the mean vital rates for a matrix population model
vr _ dorm _ enter(), vr _ dorm _ exit(), vr _

fecundity(), vr _ growth(), vr _ shrinkage(), 
vr _ stasis(), vr _ survival()

Derives mean vital rates of survival, growth (or development), 
shrinkage (or de- development), stasis, dormancy, or 
reproduction from a matrix population model, by averaging 
across stage classes

vr _ vec _ dorm _ enter(), vr _ vec _ dorm _ exit(), 
vr _ vec _ growth(), vr _ vec _ reproduction(), 
vr _ vec _ shrinkage(), vr _ vec _ stasis(), 
vr _ vec _ survival()

Derives vectors of stage- specific vital rates of survival, growth, 
shrinkage, stasis, dormancy, or reproduction from a matrix 
population model

vr _ mat _ R(), vr _ mat _ U() Derives survival- independent vital rates for growth, stasis, 
shrinkage, and reproduction

Perturbation 
analyses

perturb _ matrix() Perturbation analysis of an emerging demographic property 
(e.g., population growth rate, damping ratio) with respect to 
changes on matrix elements

perturb _ trans() Perturbation analysis of transition types within a matrix 
population model

perturb _ vr() Perturbation analysis of underlying vital rates (Franco & 
Silvertown, 2004) in a matrix population model

perturb _ stochastic() Perturbation analysis of an emerging demographic property 
(e.g. population growth rate, damping ratio) with respect to 
changes on matrix elements
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the Rcompadre documentation website (https://jones or.github.
io/Rcomp adre/) give further detailed coverage of the package's 
capabilities.

3  |  Rage

The Rage package contains functions to facilitate the calculation of 
life- history metrics (Table 2) from MPMs. The guiding philosophy 
of the package centres on (a) augmenting the suite of life- history 
analyses that are implemented in R and (b) providing support for 
analyses— whether new in Rage or previously implemented else-
where— to be conducted in a standardised way across large numbers 
of MPMs. Other functions are novel, such as estimates of the pace 
and shape of reproduction (Baudisch & Stott, 2019). Broadly, the 
functions fall into six categories (Figure 1b, Table 2):

1. Transformation: reshape, resize and reorder whole MPMs;
2. Life tables: convert MPMs to life tables and life table components;
3. Life- history traits: calculate life- history metrics;
4. Vital rates: extract and summarise the component vital rates of 

MPMs;
5. Visualisation: plot the life cycle graph;
6. Perturbation analyses: calculate sensitivity and (stochastic) elas-

ticity of any demographic statistic to perturbations of MPM ele-
ments, vital rates or transition types.
To illustrate the functionality and inter- compatibility of func-

tions among these categories, we describe a workflow that recon-
ciles a common problem in comparative life- history analysis: the 
desired life- history metric requires an age- structured life table, but 
the available data are stage- structured MPMs. Although the math-
ematical descriptions for each step have long been available in the 
demographic literature, Rage both implements these as R functions 
and does so in a way that enables interoperability of function inputs 
and outputs. We provide in- depth vignettes for each group of func-
tions at the Rage documentation website (https://jones or.github.

io/Rage/). However, several Rage functions, such as mpm _ to _

table, entropy _ ... and shape _ ..., rest on the production of 
age- based life tables from stage- based matrices and thus it is perti-
nent to outline this important aspect of Rage here.

To enable a broader range of life- history analyses on data from 
MPMs, Rage implements conversions of stage- structured MPMs 
to age- specific mortality and fertility life tables using methods de-
veloped by Cochran and Ellner (1992), Caswell (2001) and Caswell 
et al. (2018). These methods require that MPMs are decomposed 
into their constituent submatrices, U, and optionally F and/or C (see 
above) and the determination of the stage we consider to be the 
start of the life cycle (e.g. seed establishment, seed germination, 
etc.). In a nutshell, the method works by an iterative procedure 
whereby a synthetic cohort starting at age zero is projected using 
the matrix model. At every iteration, the cohort ages by one projec-
tion interval (often 1 year), and we can keep track of survivorship (lx), 
the proportion of the original cohort that have survived each itera-
tion. Fecundity is calculated in an analogous way. The result is a full 
life table that is readily available for use in analyses that require age- , 
rather than stage- structured trajectories of demographic processes. 
We direct readers to Caswell (2001), Caswell et al. (2018) and in the 
supplementary information of Jones et al. (2014).

Once an lx trajectory is calculated, the other quantities of stan-
dard life tables can be calculated using standard life table calcula-
tions (Preston et al., 2000). In Rage, the function mpm _ to _ table 
applies these calculations to produce a life table that includes stan-
dard life table columns including age, survivorship, age- specific prob-
ability of death, force of mortality and remaining life expectancy. In 
addition, Rage provides functionality to calculate age trajectories 
for individual variables (i.e. subsets of the full life table) using the 
mpm _ to _ ... set of functions (e.g. mpm _ to _ lx; Box 1).

Importantly, converting MPMs to life tables can introduce math-
ematical artefacts that compromise the resulting analyses. Rage pro-
vides functions to diagnose and, when possible, correct for these 
artefacts. All age- from- stage calculations produce age- trajectories 
that inevitably asymptote as a mathematical consequence of 

Category Function Description

MPM 
transformation

mpm _ collapse() Collapses a matrix population model to a smaller number 
of stages using weighted averages (Salguero- Gómez & 
Plotkin, 2010)

mpm _ rearrange() Rearranges the stages of a matrix population model to 
segregate reproductive and non- reproductive stages

mpm _ split() Converts a matrix population model into survival (U), fecundity 
(F) and clonal (C) matrices

mpm _ standardize() Transforms a matrix population model to a standardised set of 
stage classes

repro _ stages() Identifies which stages in a matrix population model are 
reproductive

standard _ stages() Identifies the stages of a matrix population model that 
correspond to different parts of the reproductive life cycle

Visualisation plot _ life _ cycle() Plots a life cycle diagram from a matrix population model

TA B L E  2  (Continued)

https://jonesor.github.io/Rcompadre/
https://jonesor.github.io/Rcompadre/
https://jonesor.github.io/Rage/
https://jonesor.github.io/Rage/
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describing the vital rates as functions of discrete stages (Horvitz & 
Tuljapurkar, 2008). Regardless of how low the survival probabilities 
are in an MPM, there will be a non- zero probability that an individual 
could reach ages of 100, 10,000 or >1 million years. The exponential 
rate that these probabilities decay with increasing age is determined 
by the dominant eigenvalue of U, but even rapid decay can bias some 

life- history metrics (e.g. entropy and life span measures). Rage pro-
vides a convenient and principled way of correcting for this artefact 
by imposing a lower probability threshold defined by the degree of 
convergence to the quasi- stationary distribution (see also the sup-
plementary information of Jones et al., 2014). In Rage, we do this 
by first scaling the right eigenvector (w) so that it sums to one and 

BOX 2 Using Rage to calculate and visualise longevity

Here we demonstrate the use of Rage, focussing on the global analysis of mammalian longevity introduced in Box 1. We begin 
our mammal longevity analysis by adding columns to the data extracted from COMADRE (Box 1) that contain the two user- supplied 
arguments, matU and start_life, using the dplyr function mutate. We can then pair mutate with the base R function mapply to call 
the longevity function with each row's matU and start_life arguments and return the estimated longevity in a new column. Then we 
check the age of convergence to the quasi- stationary stage distribution (QSD), and filter the dataset so that it only includes matrices 
where the estimated longevity is less than or equal to the age at which QSD is reached.

 # Load package  

library(Rage)  

 # Add columns for matU and matF, then calculate generation time, longevity and  

 # convergence  

 # Filter to ensure that QSD is not reached before estimated longevity.  

mammals <-  mammals %>%  
 mutate(  

 matU = matU(.),  

 start _ life = mpm _ first _ active(.)  

 ) %>%  
 mutate(  

 matF = matF(.),  

 start _ life = mpm _ first _ active(.)  

 ) %>%  
 mutate(gentime = mapply(gen _ time, matU, matF)) %>%  
 mutate(longevity = mapply(longevity, matU)) %>%  
 mutate(convage = mapply(qsd _ converge, matU)) %>%  
 filter(longevity -  convage <= 0)  
library(khroma)  

ggplot(mammals, aes(x = gentime, y = longevity)) +  
 geom _ point(aes(colour = Order)) +  
 scale _ color _ manual(values = c(as.vector(colour("bright")(7)),"black")) +  
 scale _ x _ continuous(trans = "log", breaks = c(2, 5, 10, 20, 40, 80)) +  
 scale _ y _ continuous(trans = "log", breaks = c(2, 5, 10, 20, 40, 80, 160)) +  
 labs(x = "Generation time (years)", y = "Longevity (years)") +  
 geom _ smooth(method = "lm", colour = "grey50") +  
 theme _ minimal()  

 #> `geom _ smooth()̀  using formula 'y ~ x'

As one might expect, there is a strong association between generation time and our measure of life span (Figure 3). It would of 
course be interesting to use more formal statistical methods to explore this (and similar relationships) further, for example to examine 
the variation in the scaling relationship across orders. When doing so, it will be important to carefully consider taxonomic and geo-
graphical or ecoregion bias in the dataset. In addition, researchers should carefully vet the included data for suitability— including a 
consideration of whether the models are based on pre-  or post- reproduction censuses.
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then, for each iteration of the age- from- stage calculations, we mea-
sure the convergence of the proportional cohort structure as Δx = 0.5 
||px − w||, where px is the proportional stage structure at the xth itera-
tion of the age- from- stage calculations (i.e. at time x). When px eventu-
ally converges to equal w, Δx will equal 0. We can use this information 
to truncate the life tables produced from age- from- stage methods to, 
for example, ages where Δx > 0.05. Furthermore, we may judge the 
reliability of age- from- stage methods by comparing the lx trajectory 
with the Δx trajectory: If convergence is reached before lx declines to, 
for example, 0.05 (i.e. 5% of the cohort remaining alive), we suggest 
reconsidering the use of this approach for that particular model.

In Box 2, we demonstrate the use of Rage via a global analysis 
of mammalian longevity introduced in Box 1. The life- history metric 
of interest is calculated with Rage's longevity function— a novel 
implementation in this package— by projecting a hypothetical cohort 
of individuals with an MPM until only a user- defined (default: 1%) 
fraction of individuals from the initial cohort remain alive. Since only 
a single cohort is tracked, the function requires only the U subma-
trix (stage- specific survival and transition rates) as the demographic 
process input, which may be supplied directly by the user or ex-
tracted from a CompadreDB object using the matU function from 
Rcompadre.

The longevity function also requires us to define which stage 
we consider to be the start of the life cycle. This is fairly clear for 
most mammals but may be more subjective in some groups depend-
ing on the goals of the analysis (e.g. seed maturation versus germina-
tion for plants with a persistent seed bank). The Rcompadre function 
mpm _ first _ active facilitates scaling this task across a large 
number of MPMs by returning an integer index for the first active 
stage class (i.e. non- dormant), as defined by the original study author 
of the MPM. Like the results of Rcompadre∷cdb _ flag, we intend 
this to be used as a guide— not a replacement— for careful evaluation 
of suitability. It may be more appropriate to identify the start of life 
manually in some cases. Users may control the cohort survivorship 
threshold via the argument lx _ crit. The default, 0.01 (=1%), may 
not be suitable for all organisms, and users may find that exploring 

other quantiles (e.g. 50%) offers a richer description of the age- at- 
death distribution. Finally, the function requires us to set a maximum 
age to consider (xmax, default = 1,000) as a pragmatic matter of 
computational speed. This default can be increased for exceptionally 
long- lived organisms, and we remind users that all measures of age in 
the Rage package use the projection interval of the MPM provided 
(see the ProjectionInterval metadata column for COM(P)
ADRE data retrieved using Rcompadre::cdb _ fetch). A final im-
portant caveat for the general use of Rage is that the life- history cal-
culations, like most other MPM calculations, assume that the models 
are parameterised using post- reproductive census data. Therefore, 
outputs are likely to be incorrect if the models were parameterised 
using pre- reproductive data (see Kendall et al., 2019). We advise 
users to check the type of data included in analyses carefully and to 
exclude pre- reproductive matrices.

4  |  CONCLUSIONS

The tools provided by Rcompadre and Rage facilitate efficient 
and at- scale use of an unrivalled database of demographic process 
rates and the calculation of numerous life- history and demographic 
metrics that are useful in ecology and evolution. In so doing, this 
pair of packages fills gaps and reduces overhead in the analytical 
workflow of comparative and macroecological demographic analy-
ses. Although we designed the packages to operate together, Rage 
is also well- suited for general use with non- COM(P)ADRE matrix 
population models, whether in support of the analysis of new em-
pirical MPMs or simulation- based theoretical studies of life history. 
We showcase the use of these packages to illustrate how they may 
be particularly useful in comparative demographic studies, for ex-
ample, to address topics related to the evolution of life histories or 
comparative population dynamics across many species.

Users can obtain a complete index of the functions available in 
Rcompadre and Rage by running ?Rcompadre and ?Rage, respec-
tively, in R, or by visiting the package documentation websites at 

F I G U R E  3  The relationship between 
estimated generation time and longevity 
(defined as the age that 1% of a synthetic 
cohort would reach, based on the MPM). 
The line represents the fit of an ordinary 
least- squared regression through the data. 
The slope is 1.28 (±0.07) and the intercept 
is 0.26 (±0.16); R2 = 0.90; F1,43 = 379; 
p < 0.001
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https://jones or.github.io/Rcomp adre/ and https://jones or.github.io/
Rage/, respectively. Our ultimate hope is that democratising access 
to demographic data and analytic tools will empower a wide range of 
users to unlock the great potential of matrix population models. This 
will allow the community to further our basic understanding of life 
history, enable data- driven conservation management, and educate 
and inspire the next generation of population biologists.
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