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How climate affects biotic interactions is a question of urgent 
concern1–3. Theory predicts that biotic interactions are stron-
ger at lower latitudes4–6. However, the role of climate in govern-
ing these patterns is typically assumed, rather than explicitly 
tested. Here, we dissected the influence of climatic descrip-
tors on predation pressure using data from a global experi-
ment with model caterpillars. We then used projections of 
future climate change to predict shifts in predation pressure. 
Climate, particularly components of temperature, explained 
latitudinal and elevational patterns of predation better than 
latitude or elevation by themselves. Projected predation pres-
sure was greater under higher temperatures and more stable 
climates. Increased climatic instability projected for the near 
future predicts a general decrease in predation pressure over 
time. By identifying the current climatic drivers of global pat-
terns in a key biotic interaction, we show how shifts in these 
drivers could alter the functioning of terrestrial ecosystems 
and their associated services.

Human activities are impacting the Earth’s climate at an unprece-
dented rate7. Climate warming, temperature instability and extreme 
precipitation events are all increasing in intensity8,9. These climate 
changes can alter the frequency, direction and magnitude of biotic 
interactions2, and result in major biodiversity loss through the col-
lapse of such interactions3,10. Efforts to successfully manage and 
restore the ecosystems may be futile without a clearer understand-
ing of the influence of accelerating climate change on the strength 
and frequency of biotic interactions2,3.

Many types of biotic interactions tend to be stronger and more 
frequent towards lower latitudes6,11–14 (but see ref. 15) and eleva-
tions11,14. These global (latitude) and local or regional (elevation) 
patterns indicate that climatic conditions may be a common driver 
underlying the strength and frequency of biotic interactions. 
However, previous macroecological studies of latitudinal and eleva-
tion gradients in biotic interactions (Fig. 1a) do not directly test 
the effect of climatic variables16,17. Moreover, climatic conditions 
do not always correlate with changes in latitudinal and elevational 
gradients18,19—a mismatch that can lead to spurious relationships 
between latitude and/or elevation, and biological responses20. 
Large-scale patterns are typically inferred from a set of experiments 
and observations that vary in their methods and protocols21, thus  

muddling climatic signatures. In contrast, standardized experi-
ments replicated across regional and global scales allow us to sepa-
rate the direct effects of climate from indirect effects of latitude or 
elevation on biotic interactions.

We explicitly tested whether and how key climate variables pre-
dict latitudinal and elevation patterns of predation pressure using a 
global dataset with model caterpillars14. Following a standardized 
protocol, this experiment recorded attack rates (over 12,694 cat-
erpillar days) by arthropod, mammal and bird predators, across a 
11,660 km latitudinal gradient (30.4° S to 74.3° N) and elevations 
spanning from 0 to 2,100 above sea level. We focused our analyses 
on attacks by arthropods alone, since previous results showed that 
global gradients in overall attack rates were driven by variation in 
arthropod predation14. As a response, we used the probability of a 
model caterpillar being attacked by an arthropod predator per day 
exposed14 (here, defined as the predation pressure). To separate the 
effects of climate from those of latitude and elevation, we extracted 
a set of bioclimatic and topographic variables from WorldClim ver-
sion 2 and ENVIREM, at 1 km2 resolution, for each of the 31 target 
sites included in the original experiment14 (see Methods). We then 
applied structural equation modelling (SEM) to determine the rela-
tive importance of the direct and indirect effects of absolute latitude, 
elevation and the underlying local climate on predation pressure. 
To derive succinct descriptors of climatic variation in multivariate 
space, we derived separate projections of temperature (first axis of 
a principal component analysis (PCA) including four components 
all representing different aspects of temperature) and precipitation 
(first axis of a PCA including five components all representing dif-
ferent aspects of precipitation) (Methods).

There was a strong positive effect of temperature variables 
(β =​ 0.67, s.e. =​ 0.21, P <​ 0.001) on attack rate (Fig. 1b), but no effect 
of precipitation (β =​ 0.22, s.e. =​ 0.20, P =​ 0.28). This analysis identi-
fies temperature as the key climate driver of attack rates along the 
global latitudinal and elevation gradients. Because elevation and 
absolute latitude are negatively correlated with temperature com-
ponents, they alter predation pressure indirectly through effects on 
temperature (Fig. 1b). The bioclimatic variables that comprised the 
components of temperature in the PCA included mean annual tem-
perature (bio1), mean diurnal range (bio2), temperature seasonality 
(bio4) and temperature annual range (bio7) (Supplementary Table 1  
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and Methods). The first PCA axis was driven by positive values of 
bio1 and negative values of bio4 and bio7 (Supplementary Table 1 
and Supplementary Fig. 1); positive values of bio4 and bio7 rep-
resent sites with more stable temperature, as characterized by less 
variation within years. Therefore, the positive effect of temperature 
detected in our structural equation model indicates that predation 
pressure increases with mean annual temperature, and in climates 
with higher temperature stability. None of the topographical vari-
ables significantly altered arthropod attack rates (Supplementary 
Fig. 2), and their removal improved the description of the predation 
patterns (change in small-sample-size corrected Akaike informa-
tion criterion, Δ​AICc =​ 3.8; Fig. 1b and Supplementary Fig. 2).

We provide strong empirical evidence that the current climate 
(and especially its temperature components) is the key determinant 
of latitudinal and elevational patterns in arthropod predation across 
the globe. Any changes to current climatic conditions could then alter 
the distribution of predation pressure at the global scale. To evaluate 
the extent to which current patterns in predator–prey interactions 
and predation pressure may shift with ongoing climate change, we 
applied two complementary analytical approaches: (1) generalized 
linear mixed-effects modelling (GLMM), which projected predation 
pressure at a local scale over time (years 2050 and 2070), and (2) eco-
logical niche modelling (ENM), which projected predation pressure 
over time and space (that is, 2050 and 2070, across the globe) (see 
Methods). For the ENM approach, we classified present-day preda-
tion pressure into low (corresponding to the lower 50% of the cur-
rent distribution of predation pressure) or high predator attack rates 
(spanning the upper 50% of the distribution), respectively (Fig. 2).  
Then, we performed ENM to predict the distribution of each of 
these classes under current and future climate scenarios, using the 
four key temperature variables identified by our structural equation 
model (Fig. 1b and Supplementary Fig. 1) and an ensemble of two 
general circulation models (GCMs)—the Model for Interdisciplinary 
Research on Climate 5 (MIROC5) and Community Climate System 
Model 4 (CCSM4)—and two representative concentration pathways 
of CO2 emission (RCPs)—RCP4.5 and RCP8.5 (see Methods for 
details). The same GCMs, RCPs and temperature variables as used in 
ENM were used to build individual predictive GLMM maps.

According to the ENM, the current prevalence of high predation 
pressure increased towards lower latitudes (Fig. 2a), whereas low 
predation pressure dominated at higher latitudes (Fig. 2b). These 
patterns were similar for both RCPs used (Fig. 2 and Supplementary 
Figs. 3–5). However, the latitudinal gradient was not uniform. Some 
temperate and polar regions (notably, coastal areas in southern 
Oceania, Patagonia and northern Europe) were predicted to be 
characterized by strong predation pressure, which was otherwise 
more characteristic of subtropical latitudes (Fig. 2).

Extending the ENM of predation pressure to future climate 
scenarios revealed a decline in the area experiencing high preda-
tion pressure at lower latitudes, and an increase of suitability for 
high predation pressure at higher latitudes (Fig. 2, Supplementary 
Figs. 3–5 and Supplementary Table 2). Indeed, modelling the dif-
ference of future (2050 and 2070) and current climate scenarios 
(that is, projected difference over time) revealed qualitatively simi-
lar results at the site (GLMM) and projected global levels (ENM). 
Both approaches suggested decreasing predation pressure towards 
lower latitudes, and a remarkable increase of predation pressure 
towards higher latitudes (Figs. 3 and 4). These patterns were similar 
for both GCMs used, and were not affected by whether we used 
sites or plots (within sites) as our data points (see Supplementary 
Fig. 6 and Supplementary Table 3). However, the GLMM predic-
tions also revealed a projected decrease of predation pressure 
at northern latitudes (consistent across Alaska and Greenland;  
Fig. 3 and Supplementary Figs. 7–9), which—if borne out—will 
come with a major effect on the local ecosystems, yet was not 
detected by ENM. These inconsistencies in the details between the 
two modelling approaches are probably due to the high uncertainty 
of ENM projections (Supplementary Table 2), especially at the 
extremes of the current data range. Since projected climate predicts 
stronger changes in the range and instability of temperature than 
in average temperatures (Supplementary Fig. 10), and since these 
changes are predicted to be stronger in the tropics than in temperate 
zones (Supplementary Fig. 11), the observed decline in tropical pre-
dation pressure is probably due to the climatic instability predicted 
for this region in the near future (Supplementary Figs. 10 and 11). 
This decline in predation pressure was pronounced inland, but not 
in coastal areas, where ocean temperature may buffer climatic insta-
bility in the future.
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Fig. 1 | Direct and indirect effects of latitude, elevation and climate 
(current and future) on predation pressure. a, Conceptual representation of 
the traditional approach to understanding latitudinal and elevation patterns 
in the distribution of biotic interactions, in contrast with the new approach 
adopted here, where we identify the causal direct and indirect influence 
of latitude and elevation, and the underlying impact of climate on biotic 
interactions. b, Outcome of SEM showing the causal effects of latitude 
(L), elevation (E) and their interactions (L ×​ E) on individual components 
of temperature and precipitation (PC1), and on arthropod attack rates 
on model prey (data from ref. 14). Red, blue and grey lines represent 
negative, positive and non-significant adjusted paths of a piecewise SEM, 
respectively, with marginal R2 values for endogenous variables. *P <​ 0.05, 
***P <​ 0.001. Model fit: Fisher’s C =​ 10.3, d.f. =​ 8, P =​ 0.25, small-sample-
size corrected Akaike information criterion (AICc) =​ 53.9.
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Overall, multiple components of climate—especially tempera-
ture—explained latitudinal and elevation patterns of predation bet-
ter than latitude or elevation by themselves. Our results also show 
that future changes in climatic conditions could rearrange the global 
distribution patterns of biotic interactions—adding a new dimen-
sion to climate change impacts. Recent advances in climatic models 
and spatial modelling tools, in combination with availability of the 
detailed global databases, allow us to predict that arthropod preda-
tion pressure would increase with warming but decrease with cli-
matic instability, especially at lower latitudes. As a particular asset, 
access to replicated experimental data obtained by a standardized 
protocol, acquired and analysed in a consistent way14, improved the 
signal-to-noise ratio in our findings.

The dependence of arthropod attack rates on temperature 
variables is strongly supported by our understanding of organis-
mal physiology. The pattern is driven by arthropods14, which—as 
ectotherms—are closely dependent on external energy. Warming 
enhances arthropod metabolic activity, food consumption rates22,23 
and reproductive rates23, all of which can increase the magnitude 
and frequency of trophic interactions22,24. However, temperature 
increases above the thermal optima of ectotherm predators can 
destabilize predator–prey dynamics and cause local extinctions24. 
Moreover, changes in the variance of temperature can have dispro-
portionately greater impacts on individual taxa and whole commu-
nities than changes to the mean temperature25. Such variability will 
be important when it occurs both between different parts of the day 
and between different parts of the year, as both types of variation 
will constrain the activity period of ectotherms, and as temperature 
extremes will affect the mortality rates experienced by the predator 
population itself.

Where previous climate change research has focused on the shifts 
in species distribution, we have applied conceptually equivalent 
techniques to model the global distribution of biotic interactions. 
The application of niche modelling and generalized linear mixed-
effects modelling allowed us to identify the areas where predation 

intensity is expected to increase or decrease in the future. Our 
model projections of reduced arthropod predation pressure may 
indicate yield reduction and increased threats to food security, due 
to a decrease in the efficiency of biological control in the areas that 
are already most vulnerable under climate change26. In pointing out 
these concerns, we believe that we serve as important whistle blow-
ers. Yet, we should clearly stress caveats and limits to predictability. 
At present, we lack information regarding the rate with which biotic 
interaction strength may adjust to a changing climate. In terms of 
species distribution change, terrestrial taxa tend to move poleward 
by an average rate of 17 km per decade27. Differences in species 
responses can result in novel biotic communities, and altered biotic 
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Fig. 2 | Global distribution of high and low predation pressure under the current climate (2015) and a climate scenario projected for 2070. a,b, We 
classified the predation pressure into two classes: high (a; n =​ 62 occurrence points) and low (b; n =​ 92). Current (left) and projected (right) distributions 
of predation pressure are shown for each class (see Methods for details). The niche model was based on the four major temperature components 
identified by the PCA (Supplementary Fig. 1), assuming an ensemble of CCSM4 and MIROC5 GCMs (RCP4.5) (see Methods for details). Black dots show 
the sites according to each category of predation pressure.
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Fig. 3 | Changes in predation pressure predicted by the GLMM approach. 
Difference in odds ratios between the future (2070) and current (2015) 
predation rates. A value of 1.0 implies no change, whereas a value of 2.0 
shows a doubling of the odds of an individual caterpillar being attacked per 
day. Predicted values were obtained from GLMM, based on the four major 
temperature components identified by PCA (Supplementary Fig. 1), assuming 
the MIROC5 (RCP4.5) global climate model (see Methods for details).
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interactions can either hinder or facilitate further range shifts, often 
with cascading effects28. A satisfactory understanding of how com-
munities come together and function in a changing climate will call 
for more than modelling each species on its own or biotic interaction 
strength separate from community composition and functioning29. 
Yet, while our current predictions come with major uncertainties, 
they identify a new avenue for important exploration30.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41558-018-0347-y.

Received: 6 December 2017; Accepted: 26 October 2018;  
Published online: 26 November 2018

References
	1.	 Tylianakis, J. M. et al. Global change and species interactions in terrestrial 

ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
	2.	 Blois, J. L. et al. Climate change and the past, present, and future of biotic 

interactions. Science 341, 499–504 (2013).
	3.	 Urban, M. C. et al. Improving the forecast for biodiversity under climate 

change. Science 353, aad8466 (2016).

	4.	 Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).
	5.	 Schemske, D. W. in Speciation and Patterns of Diversity (eds Butlin, R. K., 

Bridle, J. R. & Schluter, D.) 219–239 (Cambridge Univ. Press, Cambridge, 2009).
	6.	 Schemske, D. W. et al. Is there a latitudinal gradient in the importance of 

biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
	7.	 IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, 

Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).
	8.	 Allan, R. & Soden, B. Atmospheric warming and the amplification of 

precipitation extremes. Science 321, 1481–1484 (2008).
	9.	 Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence 

of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 
560–564 (2015).

	10.	Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 
1770–1774 (2000).

	11.	Callaway, R. M. et al. Positive interactions among alpine plants increase with 
stress. Nature 417, 844–847 (2002).

	12.	Romero, G. Q. et al. Ecosystem engineering effects on species diversity across 
ecosystems: a meta-analysis. Biol. Rev. 90, 877–890 (2015).

	13.	LaManna, J. A. et al. Plant diversity increases with the strength of negative 
density dependence at the global scale. Science 356, 1389–1392 (2017).

	14.	Roslin, T. et al. Higher predation risk for insect prey at low latitudes and 
elevations. Science 356, 742–744 (2017).

	15.	Moles, A. T. & Ollerton, J. Is the notion that species interactions are  
stronger and more specialized in the tropics a zombie idea? Biotropica 48, 
141–145 (2016).

	16.	Romero, G. Q. et al. Food web structure shaped by habitat size and climate 
across a latitudinal gradient. Ecology 97, 2705–2715 (2016).

Equator

Equator

a

Change in
suitability
(2070 – current)

Loss

Gain

Change in
suitability
(2070 – current)

Loss

Gain

b

Fig. 4 | Global shift in the suitability of high and low predation pressure between the present-day climate and that of 2070. a,b, Differences between 
the projected (2070) and current climate scenarios for high (a) and low (b) predation pressure. Blue regions demonstrate that suitability (that is, the 
likelihood of occurrence of a certain category of predation strength) under the current climate is greater than in 2070, suggesting future loss of suitability, 
especially at lower latitudes. Sites in brown are predicted to increase (gain) in future suitability. Niche modelling was based on the four major temperature 
components identified by PCA (Supplementary Fig. 1), assuming an ensemble of CCSM4 and MIROC5 GCMs (RCP4.5).

NatUre Climate Change | VOL 8 | DECEMBER 2018 | 1087–1091 | www.nature.com/natureclimatechange1090

https://doi.org/10.1038/s41558-018-0347-y
https://doi.org/10.1038/s41558-018-0347-y
http://www.nature.com/natureclimatechange


LettersNaTure ClImaTe CHange

	17.	Reynolds, P. L. et al. Latitude, temperature and habitat complexity predict 
predation pressure in eelgrass beds across the Northern Hemisphere. Ecology 
99, 29–35 (2018).

	18.	Jiang, M. et al. Biome-specific climatic space defined by temperature and 
precipitation predictability. Glob. Ecol. Biogeogr. 26, 1270–1282 (2017).

	19.	Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 
569–574 (2007).

	20.	Hawkins, B. A. & Diniz-Filho, J. A. F. ‘Latitude’ and geographic patterns in 
species richness. Ecography 27, 268–272 (2004).

	21.	Anstett, D. N. et al. Sources of controversy surrounding latitudinal patterns in 
herbivory and defense. Trends Ecol. Evol. 31, 789–802 (2016).

	22.	Brown, J. H. et al. Towards a metabolic theory of ecology. Ecology 85, 
1771–1789 (2004).

	23.	Rosenblatt, A. E. & Schmitz, O. J. Climate change, nutrition, and  
bottom-up and top-down food web processes. Trends Ecol. Evol. 31,  
965–975 (2016).

	24.	Gilbert, B. et al. A bioenergetic framework for the temperature dependence of 
trophic interactions. Ecol. Lett. 17, 902–914 (2014).

	25.	Vasseur, D. A. et al. Increased temperature variation poses a greater risk to 
species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).

	26.	Wheeler, T. & von Braun, J. Climate change impacts on global food security. 
Science 341, 508–513 (2013).

	27.	Chen, I.-C. et al. Rapid range shifts of species associated with high levels of 
climate warming. Science 333, 1024–1026 (2011).

	28.	Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. 
Lond. B 280, 20121890 (2013).

	29.	Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on 
ecosystems and human well-being. Science 355, eaai9214 (2017).

	30.	Marino, N. A. C., Romero, G. Q. & Farjalla, V. F. Geographical and 
experimental contexts modulate the effect of warming on top‐down control: a 
meta‐analysis. Ecol. Lett. 21, 455–466 (2018).

Acknowledgements
We are most grateful to all authors of Roslin et al.14; without their contributions, this 
study would not have been possible. G.Q.R. was supported by BPE-FAPESP (grant 
no. 2016/01209-9) and CNPq-Brazil research grants. T.S.-S. was supported by a CNPq 
fellowship (grant no. 151003/2018-1). We gratefully acknowledge funding from the 
Academy of Finland (grant nos 138346, 276909, 285803 to T.R.). This work was 
performed during GQR’s sabbatical stay at Queen Mary University of London. This 
paper is a contribution of the Brazilian Network on Global Climate Change Research 
funded by CNPq (grant no. 550022/2014-7) and FINEP (grant no. 01.13.0353.00).

Author contributions
G.Q.R. conceived the idea, developed it with all co-authors, and drafted the manuscript 
with inputs from all co-authors. G.Q.R., T.G.-S. and N.A.C.M. performed the statistical 
analyses. T.S.-S. performed the niche modelling with inputs from T.G.-S. and G.Q.R. 
T.G.-S. and T.S.-S. drafted the figures. All authors contributed substantially to revisions 
and the final format of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41558-018-0347-y.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to G.Q.R.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2018

NatUre Climate Change | VOL 8 | DECEMBER 2018 | 1087–1091 | www.nature.com/natureclimatechange 1091

https://doi.org/10.1038/s41558-018-0347-y
https://doi.org/10.1038/s41558-018-0347-y
http://www.nature.com/reprints
http://www.nature.com/natureclimatechange


Letters NaTure ClImaTe CHange

Methods
Experimental design and data. Estimates of local attack rates were derived from a 
globally distributed experiment of predator attacks on model prey (data from ref. 14).  
Briefly, model prey were moulded from green plasticine, shaped and sized as 
common geometrid caterpillars. A total of 20 prey models were deployed within 
each of 5 plots at each of 31 sites along a latitudinal gradient spanning from 30.4° S 
to 74.3° N and an elevation gradient spanning from 0 to 2,100 m above sea level. 
Together, we monitored the fates of 2,879 model caterpillars over 4 to 18 days, 
resulting in a total of 12,694 caterpillar days. Whenever an attack was scored, the 
focal caterpillar was removed without replacement. To avoid observer bias, all 
participants returned the caterpillars for double-blind scoring by an experienced 
team at the University of Helsinki. Based on tooth, beak, mandibular or radular 
marks, all feeding damage on caterpillars was attributed to one of six predator 
groups: birds, lizards, mammals, arthropods, gastropods or an unknown predator. 
Intact caterpillars were scored as being not attacked, whereas the few caterpillars 
not retrieved were excluded from all analyses. Arthropods accounted for the 
vast majority of attacks, with clear, latitudinal patterns in attack rates14. Thus, we 
focused our analyses on attack rates by arthropod predators per caterpillar-day 
exposed in the field. For full details, see refs 14,31.

Climatic and topographic variables. To describe local climatic conditions, 
we extracted local climatic descriptors from WorldClim version 2 (ref. 32) and 
ENVIREM33. For each of 31 experimental sites, we selected 11 climatic variables, 
water deficit and topography, which are available at a spatial resolution of 30 arcsec 
(~1 km at the Equator). The terrain roughness index (TRI; see below) of 3 sites was 
extracted at a resolution of 2.5 arcmin (~5 km at the Equator) since there were no 
data available at 30 arcsec for these localities.

The climatic variables were extracted from WorldClim 2.0 (ref. 32) datasets 
(http://www.worldclim.org/). The climatic components were: bio1 =​ annual 
mean temperature; bio2 =​ mean diurnal range (mean of monthly (maximum 
temperature −​ minimum temperature)); bio4 =​ temperature seasonality 
(s.d. ×​ 100); bio7 =​ temperature annual range (maximum temperature of warmest 
month −​ minimum temperature of coldest month); bio12 =​ annual mean 
precipitation; bio13 =​ precipitation of wettest month; bio14 =​ precipitation of driest 
month; and bio15 =​ precipitation seasonality (coefficient of variation). The variable 
associated with water deficit, obtained from the ENVIREM dataset33, included the 
Thornthwaite aridity index (hereafter ‘aridity’), which measures the degree of water 
deficit below water need32. This index expresses the relative aridity of a month, 
comparing differences between precipitation and potential evapotranspiration, 
where values near 0 represent arid environments. Sites defined as being climatically 
more unstable were those characterized by higher intra-annual (for example, bio4 
and bio7) or diurnal (for example, bio2) variations34.

The topographic variables, which reflect elevation variability in a certain area 
or pixel, were TRI and topographic wetness, both of which were extracted from the 
ENVIREM database33. TRI denotes the local variation in seabed terrain compared 
with a central pixel. This index approaches 1 in flat terrains, and increases 
positively with terrain roughness35. Topographic wetness denotes elevation above 
channel networks, reflecting lateral water accumulation and the moisture status of 
a particular area36.

Statistical analyses. Causal relationships. To explicitly test the influence of latitude, 
elevation and their interaction on components of climate, and how components 
of climate and topography (TRI and topographic wetness) influence arthropod 
predation pressure (the fraction of caterpillars attacked by arthropod predators 
per day), we fitted a causal model through structural equation modelling using the 
piecewiseSEM package37. SEM is a suitable tool for evaluating direct and indirect 
effects in ecological systems38. The piecewise models were built by GLMM (using 
the function glmer with binomial family) or using linear mixed-effects models 
(with the function lme). Since the original predation experiment31 deployed 20 
model caterpillars within each of 5 plots at each of 31 sites, we used plot nested 
within site as a random effect in both generalized linear mixed-effects models and 
linear mixed-effects models. To construct these models, which directly tested the 
effect of temperature and precipitation on predation pressure, we first performed 
separate PCAs for the climatic components of temperature (bio1, bio2, bio4 and 
bio7) and precipitation (bio12, bio13, bio14, bio15 and aridity). We then used 
the first orthogonal axis (PC1) of temperature (explaining 71.2% of the variation) 
and precipitation (explaining 53.0% of the variation) as endogenous predictors of 
predation pressure in the SEMs. We performed these two PCAs using the functions 
rda (vegan package) and prcomp (stats package). The predictors PC1temperature and 
PC1precipitation, TRI and topographic wetness were not collinear (variance inflation 
factor <​ 2.07). Model fits were evaluated using Shipley’s test of d-separation 
through Fisher’s C statistic37.

Current and projected climate variations. The range of variation for each bioclimatic 
descriptor of temperature (bio1, bio2, bio4 and bio7) was calculated as the 
difference between the projected and current climate. Before calculating the range 
of all bioclimatic variables, we standardized their values between 0 and 1 to prevent 
spurious comparisons between variables on different scales. Then, we subtracted 
the projected (future) values from the present values of each bioclimatic variable. 

Short arrows (for example, bio1 in Supplementary Fig. 10) indicate small changes 
in temperature features in the near future (2050 and 2070) and long arrows (bio2, 
bio4 and bio7) indicate big changes in temperature in the near future. These 
calculations were done for two independent GCMs (MIROC5 and CCSM4).

We also used an orthogonal Procrustes analysis to estimate the variation 
between current and projected future climate for temperate and tropical regions. 
We selected only the significant variables used in the SEM model (that is, bio1, 
bio2, bio4 and bio7). Here, we first performed a PCA on both current and projected 
climate, previously standardized to vary between 0 and 1. We then applied the 
Procrustes analysis to superimpose the two datasets (PCA scores) while minimizing 
(by rotation and mirror reflection) the sum of squared distances between them. 
We did not intend to calculate the concordance between the two matrices 
(that is, the m2 statistics39). Instead, we produced the typical Procrustean plot 
(Supplementary Fig. 11) and calculated the Euclidean distance (that is, the length of 
the arrow) between the reference matrix (PCAcurrent) and rotated PCA scores of the 
projected climatic variables (PCAprojected). Because PCA scores represent the linear 
combination of raw (standardized) data, the position (score) of each site in the 
two-dimensional space indicates its ‘mean’ climate value. Therefore, the further the 
position of the reference (current climate) from the rotated (future climate) score, 
the higher the variation of bioclimatic variables. In addition, loadings can be used 
to estimate the contribution of bio1, bio2, bio4 and bio7 to the climatic variation 
between present and future projections. Therefore, the length of the arrow in the 
Procrustean plot indicates the variation between the current and future climate; 
sites with longer arrows are expected to experience greater climate change.

All the statistical analyses were performed using the language environment 
R40. The significance level chosen was α =​ 0.05. We checked variance heterogeneity, 
normality and outliers through graphical evaluation (for example, Q–Q plots, 
Cook’s distance and influence). We also tested and corrected for overdispersion in 
the models with binomial family (GLMM).

Predicting predation pressure. To map the effect of future climate change on 
the global distribution of predation pressure, we applied two complementary 
approaches: (1) ENM and (2) GLMM.

ENM. ENM approaches are used to predict species distribution patterns over 
time41,42. Basically, ecological niche models use the relationship between known 
occurrence points and environmental variables (mainly climate43) to predict 
suitability values at unknown sites.

Here, we used empirically estimated predation pressure as occurrence points 
from a global dataset of arthropod predator attacks on plasticine caterpillar 
models14. Since ENM deals with presence-only modelling41–43, and the attack rate 
is a proportion bound between 0 and 1 (ref. 14), we first transformed continuous 
probabilities to categorical variables. Predation pressure within each experimental 
plot was discretized into two classes (0–50% and >​50–100%), scoring a presence 
when local attack rates fell within the respective class limits: low (0–50%) and high 
(>​50–100%). The transformation of continuous variables to categorical is common 
practice in analyses of macroecological patterns44, and the results remained 
qualitatively unchanged whether we categorized attack rates into two (present 
analysis) or three classes (0–25, 26–75 and 75–100%; results not shown). After 
identifying the temperature components of climate as the main drivers of predation 
pressure using SEMs, we used the mean annual temperature, mean diurnal range, 
temperature seasonality and temperature annual range (bio1, bio2, bio4 and bio7) 
as variables for the ecological niche models. We modelled the current climate 
scenario, and those projected to 2050 and 2070, using an ensemble of MIROC5 and 
CCSM4 GCMs (RCP4.5 and RCP8.5).

To predict the spatial distribution of each class of predator attack rates, we 
used an ensemble forecasting approach45,46. For this, we built ecological niche 
models using four algorithms: (1) Envelope Score (Bioclim)47; (2) Domain (Gower 
Distance)48,49; (3) Maximum Entropy50; and (4) Support Vector Machines51. We 
shared the occurrence points in two subsets: 75% for training models and 25% to 
test (evaluate) models. As training and test points are part of the same occurrence 
dataset, we randomized this step ten times to minimize bias in the spatial structure. 
We inferred a maximum sensitivity and specificity threshold (as proposed by  
ref. 52, by using a presence-only method) and calculated the true skilled statistic 
(TSS)53 and AUC values to evaluate each model. Values of TSS vary from −​1 to +​1.  
Models presenting values of TSS higher than 0 differ from random models, and 
values higher than 0.5 are assumed to be adequate53. We also evaluated the models 
using the area under the curve (AUC) of the receiver operator characteristic; values 
of AUC vary from 0 to 1. Models with AUC values higher than 0.5 differ from 
random models, and those higher than 0.7 are considered adequate54. Uncertainty 
was evaluated using s.d.55. TSS, AUC and s.d. values for each algorithm above are 
presented in Supplementary Table 2. To predict the worldwide suitability of each 
category of predation pressure (low and high) under each climate scenario, we 
overlapped the models using different algorithms based on the weighted average by 
TSS value. The suitability values (that is, likelihood of occurrence) ranged from 0 
(low suitability) to 1 (high suitability).

GLMM. To validate the results of our niche modelling approach by a separate 
technique, we modelled predation pressure as a continuous response using GLMM.  
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Arthropod attack rates observed at each site were fitted to a generalized 
linear mixed-effects model with plot nested within site as a random effect. As 
independent, continuous variables, we included the four bioclimatic variables of 
temperature (bio1, bio2, bio4 and bio7) retained in our structural equation model 
(note that we opted to use separate climatic variables rather than the principal 
components identified in the structural equations above, since the structure of 
correlations among variables may shift with climate change). Since the response 
was a probability (attack rate per capita per day), we assumed a logit link and 
binomially distributed errors. We then used the function predict.merMod in the 
package lme4 in R to generate predicted values for the response variable (attack 
rate) under current and future climate (2050 and 2070), Climatic conditions under 
future scenarios were extracted from two different GCMs—MIROC5 and CCSM4 
(RCP4.5 and RCP8.5). Finally, as a clear-cut metric of expected change, we derived 
and mapped site-specific odds ratios of predation risk under current versus future 
(2050 and 2070) climatic conditions (Fig. 3 and Supplementary Figs 7–9).

Data availability
The data that support the findings of this study are publicly available in the Dryad 
Digital Repository at https://doi.org/10.5061/dryad.j432q.
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